102,078 research outputs found

    The Power of the Weisfeiler-Leman Algorithm to Decompose Graphs

    Get PDF
    The Weisfeiler-Leman procedure is a widely-used approach for graph isomorphism testing that works by iteratively computing an isomorphism-invariant coloring of vertex tuples. Meanwhile, a fundamental tool in structural graph theory, which is often exploited in approaches to tackle the graph isomorphism problem, is the decomposition into 2- and 3-connected components. We prove that the 2-dimensional Weisfeiler-Leman algorithm implicitly computes the decomposition of a graph into its 3-connected components. Thus, the dimension of the algorithm needed to distinguish two given graphs is at most the dimension required to distinguish the corresponding decompositions into 3-connected components (assuming it is at least 2). This result implies that for k >= 2, the k-dimensional algorithm distinguishes k-separators, i.e., k-tuples of vertices that separate the graph, from other vertex k-tuples. As a byproduct, we also obtain insights about the connectivity of constituent graphs of association schemes. In an application of the results, we show the new upper bound of k on the Weisfeiler-Leman dimension of graphs of treewidth at most k. Using a construction by Cai, F\"urer, and Immerman, we also provide a new lower bound that is asymptotically tight up to a factor of 2.Comment: 30 pages, 4 figures, full version of a paper accepted at MFCS 201

    Computing with Tangles

    Full text link
    Tangles of graphs have been introduced by Robertson and Seymour in the context of their graph minor theory. Tangles may be viewed as describing "k-connected components" of a graph (though in a twisted way). They play an important role in graph minor theory. An interesting aspect of tangles is that they cannot only be defined for graphs, but more generally for arbitrary connectivity functions (that is, integer-valued submodular and symmetric set functions). However, tangles are difficult to deal with algorithmically. To start with, it is unclear how to represent them, because they are families of separations and as such may be exponentially large. Our first contribution is a data structure for representing and accessing all tangles of a graph up to some fixed order. Using this data structure, we can prove an algorithmic version of a very general structure theorem due to Carmesin, Diestel, Harman and Hundertmark (for graphs) and Hundertmark (for arbitrary connectivity functions) that yields a canonical tree decomposition whose parts correspond to the maximal tangles. (This may be viewed as a generalisation of the decomposition of a graph into its 3-connected components.

    Balanced Crown Decomposition for Connectivity Constraints

    Get PDF
    We introduce the balanced crown decomposition that captures the structure imposed on graphs by their connected induced subgraphs of a given size. Such subgraphs are a popular modeling tool in various application areas, where the non-local nature of the connectivity condition usually results in very challenging algorithmic tasks. The balanced crown decomposition is a combination of a crown decomposition and a balanced partition which makes it applicable to graph editing as well as graph packing and partitioning problems. We illustrate this by deriving improved approximation algorithms and kernelization for a variety of such problems. In particular, through this structure, we obtain the first constant-factor approximation for the Balanced Connected Partition (BCP) problem, where the task is to partition a vertex-weighted graph into k connected components of approximately equal weight. We derive a 3-approximation for the two most commonly used objectives of maximizing the weight of the lightest component or minimizing the weight of the heaviest component

    Complexity results on the decomposition of a digraph into directed linear forests and out-stars

    Full text link
    We consider two decomposition problems in directed graphs. We say that a digraph is kk-bounded for some kZ1k \in \mathbb{Z}_{\geq 1} if each of its connected components contains at most kk arcs. For the first problem, a directed linear forest is a collection of vertex-disjoint directed paths and we consider the problem of decomposing a given digraph into a kk-bounded and an \ell-bounded directed linear forest for some fixed k,Z1{}k,\ell \in \mathbb{Z}_{\geq 1}\cup \{\infty\}. We give a full dichotomy for this problem by showing that it can be solved in polynomial time if k+3k+\ell \leq 3 and is NP-complete otherwise. This answers a question of Campbell, H\"orsch, and Moore. For the second problem, we say that an out-galaxy is a vertex-disjoint collection of out-stars. Again, we give a full dichotomy of when a given digraph can be edge-decomposed into a kk-bounded and an \ell-bounded out-galaxy for fixed k,Z1{}k,\ell \in \mathbb{Z}_{\geq 1}\cup \{\infty\}. More precisely, we show that the problem can be solved in polynomial time if min{k,}{1,}\min\{k,\ell\}\in \{1,\infty\} and is NP-complete otherwise

    A Complete Grammar for Decomposing a Family of Graphs into 3-connected Components

    Full text link
    Tutte has described in the book "Connectivity in graphs" a canonical decomposition of any graph into 3-connected components. In this article we translate (using the language of symbolic combinatorics) Tutte's decomposition into a general grammar expressing any family of graphs (with some stability conditions) in terms of the 3-connected subfamily. A key ingredient we use is an extension of the so-called dissymmetry theorem, which yields negative signs in the grammar. As a main application we recover in a purely combinatorial way the analytic expression found by Gim\'enez and Noy for the series counting labelled planar graphs (such an expression is crucial to do asymptotic enumeration and to obtain limit laws of various parameters on random planar graphs). Besides the grammar, an important ingredient of our method is a recent bijective construction of planar maps by Bouttier, Di Francesco and Guitter.Comment: 39 page

    Dynamic Programming for Graphs on Surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2^{O(k log k)} n steps. Our approach combines tools from topological graph theory and analytic combinatorics. In particular, we introduce a new type of branch decomposition called "surface cut decomposition", generalizing sphere cut decompositions of planar graphs introduced by Seymour and Thomas, which has nice combinatorial properties. Namely, the number of partial solutions that can be arranged on a surface cut decomposition can be upper-bounded by the number of non-crossing partitions on surfaces with boundary. It follows that partial solutions can be represented by a single-exponential (in the branchwidth k) number of configurations. This proves that, when applied on surface cut decompositions, dynamic programming runs in 2^{O(k)} n steps. That way, we considerably extend the class of problems that can be solved in running times with a single-exponential dependence on branchwidth and unify/improve most previous results in this direction.Comment: 28 pages, 3 figure
    corecore