242 research outputs found

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Get PDF
    We propose a multi-step evaluation schema designed to help procurement agencies and others to examine the ethical dimensions of autonomous systems to be applied in the security sector, including autonomous weapons systems

    Capability Considerations for Enhancing Safety on Long Duration Crewed Missions: Insights from a Technical Interchange Meeting on Autonomous Crew Operations

    Get PDF
    As future flight crews on long duration deep space missions are expected to operate more autonomously, considerations must be given to onboard capabilities and human-computer teaming that will fortify the safety net traditionally provided by the Mission Control Center. In August 2018, the Human Factors and Behavioral Performance Element of NASA's Human Research Program convened a Technical Interchange Meeting (TIM) on Autonomous Crew Operations at NASA Ames Research Center to address how intelligent technologies can be utilized to augment crew capabilities to support real-time anomaly response. In this paper, we highlight three topic areas discussed at the TIM that have direct implications for future crew anomaly response capabilities: smart structures, cognitive assistants, and manpower

    Capability considerations for enhancing safety on long duration crewed missions: Insights from a technical interchange meeting on autonomous crew operations

    Get PDF
    As future flight crews on long duration deep space missions are expected to operate more autonomously, considerations must be given to onboard capabilities and human-computer teaming that will fortify the safety net traditionally provided by the Mission Control Center. In August 2018, the Human Factors and Behavioral Performance Element of NASA\u27s Human Research Program convened a Technical Interchange Meeting (TIM) on Autonomous Crew Operations at NASA Ames Research Center to address how intelligent technologies can be utlilzed to augment crew capabilities to support real-time anomaly response. In this paper, we highlight three topic areas discussed at the TIM that have direct implications for future crew anomaly response capabilities: smart structures, cognitive assistants, and manpower

    Joint Unmanned Combat Air System Matching Mission Requirements, Performance Capabilities, and Critical Aviation Systems

    Get PDF
    The Joint Unmanned Combat Air Systems (J-UCAS) acquisition program is a joint Air Force and Navy effort led by the Defense Advanced Research Projects Agency (DARPA) to demonstrate a networked system of unmanned combat air vehicles (UCAV) to effectively and affordably prosecute 21st century combat missions. The potential of these weapon systems to perform dangerous combat missions at a relatively low-cost and low-risk has garnered significant interest from both Congress and the Department of Defense (DoD) and raised expectations that the J-UCAS will replace some of the DoD’s aging tactical aircraft fleet. This paper will address the requirement for the DoD and Armed Services to collectively resolve a new vision and clear strategy for the integration of unmanned combat air vehicles into the Armed Forces and the future battlespace. The DoD and Armed Services continue to struggle among themselves and with defense contractors to match resources and requirements in the development of individual “service-centric” UCAVs for specific mission areas. The current vision and strategy of the J-UCAS program is derived from an initial assessment of the cost and risk benefits of UCAV development. The failure of this approach is that it will not yield a UCAV with a distinct strategic and operational advantage. This research will trace the evolution of the current J-UCAS acquisition program. A systems-engineering approach will be applied to a reassessment of the desired J-UCAS mission requirements and corresponding performance capabilities that will serve to guide the development of critical aviation systems in the context of current and emerging technologies. It was concluded that while the J-UCAS program should remain a joint effort, the United States Air Force (USAF) should be given the priority on developing and fielding the first operational joint UCAV weapon system. Future J-UCAS weapon systems should be designed to operate in a joint environment within the emerging global command and control architecture in coordination with manned aircraft. The J-UCAS must be designed with flexible, multi-mission capability to include intelligence, surveillance, and reconnaissance; suppression of enemy air defenses and strike. The other armed services should support this effort, but initially limit their contributions to evaluating technology demonstrators that primarily focus on interoperability in each of their respective combat environments until such time as the first operational UCAV program has successfully proven its combat effectiveness

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Full text link

    Reducing the acquisition cost of the next fighter jet using automation

    Get PDF
    The acquisition cost of fast-jets has increased exponentially since WWII, placing defence budgets under severe pressure. Fleet sizes are contracting as fewer new aircraft are ordered, and with new programmes few and far between the methods of assembling airframes have hardly changed in fifty-years. Modern airframes rely on traditional welded steel assembly fixtures and high accuracy machine tools, which represent a significant non-recurring cost that cannot be reconfigured for re-use on other programmes. This research investigates the use of automation to reduce the acquisition cost. Its aim is to demonstrate innovations, which will collectively assist in achieving the twin goals of Tempest, to be manufactured 50-percent faster and 50-percent cheaper, through the re-configuration and re-use of automation, creating a flexible factory-of-the-future. Two themes were explored, the UK-MOD’s acquisition process, to position this research in the timeframe of the next generation of fast-jet, and the use of automation in airframe assembly globally, specifically focusing on Measurement Assisted Assembly (MAA), part-to-part methods and predictive processes. A one-to-one scale demonstrator was designed, manufactured and assembled using MAA; and from the measurement data additively manufactured shims for the structure’s joints were produced. The key findings are that; metrology guided robots can position parts relative to one-another, to tolerances normally achieved using welded steel fixtures, maintaining their position for days, and can then be reconfigured to assemble another part of the structure. Drilling the parts during their manufacture on machine tools, using both conventional and angle-head tooling, enables them to be assembled, negating the requirement to use traditional craft-based skills to fit them. During the manufacture of the parts, interface data can be collected using various types of metrology, enabling them to be virtually assembled, creating a Digital Twin, from which any gaps between parts can be modelled and turned into a shim using an additive manufacturing process with the limitation that current AM machines do not produce layers thin enough to fully meet the shimming requirement. The acquisition process requires, a technology to be demonstrated at technology readiness level (TRL) 3 during the concept phase, and have a route-map to achieve TRL 6 in the development phase, following the assessment phase. The novel use of automation presented in this thesis has the potential to enable manufacturing assets to be re-configured and re-used, significantly reducing impacting the acquisition costs of future airframe programmes. Collectively the innovations presented can significantly reduce the estimated 75 percent of touch labour costs and 9 percent of non-recurring costs associated with assembling an airframe. These innovations will help to enable a digital transformation that, together with other Industry 4.0 technologies and methods, can collectively enable the automated manufacture of customised aerospace products in very-low volumes. This is of relevance not only to next generation fighter jets, but also to emerging sectors such as air-taxis

    Innovation in Flight: Research of the NASA Langley Research Center on Revolutionary Advanced Concepts for Aeronautics

    Get PDF
    The goal of this publication is to provide an overview of the topic of revolutionary research in aeronautics at Langley, including many examples of research efforts that offer significant potential benefits, but have not yet been applied. The discussion also includes an overview of how innovation and creativity is stimulated within the Center, and a perspective on the future of innovation. The documentation of this topic, especially the scope and experiences of the example research activities covered, is intended to provide background information for future researchers

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 324)

    Get PDF
    This bibliography lists 200 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    ARTIFICIAL INTELLIGENCE-ENABLED MULTI-MISSION RESOURCE ALLOCATION TACTICAL DECISION AID

    Get PDF
    The Department of Defense supports many military platforms that execute multiple missions simultaneously. Platforms such as watercraft, aircraft, and land convoys support multiple missions over domains such as air and missile defense, anti-submarine warfare, strike operations, fires in support of ground operations, intelligence sensing and reconnaissance. However, major challenges to the human decision-maker exist in allocating these multi-mission resources such as the growth in battle-tempo, scale, and complexity of available platforms. This capstone study seeks to apply systems engineering to analyze the multi-mission resource allocation (MMRA) problem set to further enable artificial intelligence (AI) and machine learning tools to aid human decision-makers for initial and dynamic re-planning. To approach this problem, the study characterizes inputs and outputs of a potential MMRA process, then analyzes the scalability and complexity across three unique use cases: directed energy convoy protection, aviation support, and a carrier strike group. The critical findings of these diverse use cases were then assessed for similarities and differences to further understand commonalities for a joint AI-enabled MMRA tool.Civilian, Department of the ArmyCivilian, Department of the ArmyCivilian, Department of the NavyApproved for public release. Distribution is unlimited
    • …
    corecore