100,810 research outputs found

    FixMiner: Mining Relevant Fix Patterns for Automated Program Repair

    Get PDF
    Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PARFixMiner, with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PARFixMiner's generated plausible patches are correct.Comment: 31 pages, 11 figure

    Towards an Intelligent System for Software Traceability Datasets Generation

    Get PDF
    Software datasets and artifacts play a crucial role in advancing automated software traceability research. They can be used by researchers in different ways to develop or validate new automated approaches. Software artifacts, other than source code and issue tracking entities, can also provide a great deal of insight into a software system and facilitate knowledge sharing and information reuse. The diversity and quality of the datasets and artifacts within a research community have a significant impact on the accuracy, generalizability, and reproducibility of the results and consequently on the usefulness and practicality of the techniques under study. Collecting and assessing the quality of such datasets are not trivial tasks and have been reported as an obstacle by many researchers in the domain of software engineering. In this dissertation, we report our empirical work that aims to automatically generate and assess the quality of such datasets. Our goal is to introduce an intelligent system that can help researchers in the domain of software traceability in obtaining high-quality “training sets”, “testing sets” or appropriate “case studies” from open source repositories based on their needs. In the first project, we present a first-of-its-kind study to review and assess the datasets that have been used in software traceability research over the last fifteen years. It presents and articulates the current status of these datasets, their characteristics, and their threats to validity. Second, this dissertation introduces a Traceability-Dataset Quality Assessment (T-DQA) framework to categorize software traceability datasets and assist researchers to select appropriate datasets for their research based on different characteristics of the datasets and the context in which those datasets will be used. Third, we present the results of an empirical study with limited scope to generate datasets using three baseline approaches for the creation of training data. These approaches are (i) Expert-Based, (ii) Automated Web-Mining, which generates training sets by automatically mining tactic\u27s APIs from technical programming websites, and lastly, (iii) Automated Big-Data Analysis, which mines ultra-large-scale code repositories to generate training sets. We compare the trace-link creation accuracy achieved using each of these three baseline approaches and discuss the costs and benefits associated with them. Additionally, in a separate study, we investigate the impact of training set size on the accuracy of recovering trace links. Finally, we conduct a large-scale study to identify which types of software artifacts are produced by a wide variety of open-source projects at different levels of granularity. Then we propose an automated approach based on Machine Learning techniques to identify various types of software artifacts. Through a set of experiments, we report and compare the performance of these algorithms when applied to software artifacts. Finally, we conducted a study to understand how software traceability experts and practitioners evaluate the quality of their datasets. In addition, we aim at gathering experts’ opinions on all quality attributes and metrics proposed by T-DQA

    Overcoming Language Dichotomies: Toward Effective Program Comprehension for Mobile App Development

    Full text link
    Mobile devices and platforms have become an established target for modern software developers due to performant hardware and a large and growing user base numbering in the billions. Despite their popularity, the software development process for mobile apps comes with a set of unique, domain-specific challenges rooted in program comprehension. Many of these challenges stem from developer difficulties in reasoning about different representations of a program, a phenomenon we define as a "language dichotomy". In this paper, we reflect upon the various language dichotomies that contribute to open problems in program comprehension and development for mobile apps. Furthermore, to help guide the research community towards effective solutions for these problems, we provide a roadmap of directions for future work.Comment: Invited Keynote Paper for the 26th IEEE/ACM International Conference on Program Comprehension (ICPC'18

    Mining Fix Patterns for FindBugs Violations

    Get PDF
    In this paper, we first collect and track a large number of fixed and unfixed violations across revisions of software. The empirical analyses reveal that there are discrepancies in the distributions of violations that are detected and those that are fixed, in terms of occurrences, spread and categories, which can provide insights into prioritizing violations. To automatically identify patterns in violations and their fixes, we propose an approach that utilizes convolutional neural networks to learn features and clustering to regroup similar instances. We then evaluate the usefulness of the identified fix patterns by applying them to unfixed violations. The results show that developers will accept and merge a majority (69/116) of fixes generated from the inferred fix patterns. It is also noteworthy that the yielded patterns are applicable to four real bugs in the Defects4J major benchmark for software testing and automated repair.Comment: Accepted for IEEE Transactions on Software Engineerin

    Too Trivial To Test? An Inverse View on Defect Prediction to Identify Methods with Low Fault Risk

    Get PDF
    Background. Test resources are usually limited and therefore it is often not possible to completely test an application before a release. To cope with the problem of scarce resources, development teams can apply defect prediction to identify fault-prone code regions. However, defect prediction tends to low precision in cross-project prediction scenarios. Aims. We take an inverse view on defect prediction and aim to identify methods that can be deferred when testing because they contain hardly any faults due to their code being "trivial". We expect that characteristics of such methods might be project-independent, so that our approach could improve cross-project predictions. Method. We compute code metrics and apply association rule mining to create rules for identifying methods with low fault risk. We conduct an empirical study to assess our approach with six Java open-source projects containing precise fault data at the method level. Results. Our results show that inverse defect prediction can identify approx. 32-44% of the methods of a project to have a low fault risk; on average, they are about six times less likely to contain a fault than other methods. In cross-project predictions with larger, more diversified training sets, identified methods are even eleven times less likely to contain a fault. Conclusions. Inverse defect prediction supports the efficient allocation of test resources by identifying methods that can be treated with less priority in testing activities and is well applicable in cross-project prediction scenarios.Comment: Submitted to PeerJ C

    User Review-Based Change File Localization for Mobile Applications

    Get PDF
    In the current mobile app development, novel and emerging DevOps practices (e.g., Continuous Delivery, Integration, and user feedback analysis) and tools are becoming more widespread. For instance, the integration of user feedback (provided in the form of user reviews) in the software release cycle represents a valuable asset for the maintenance and evolution of mobile apps. To fully make use of these assets, it is highly desirable for developers to establish semantic links between the user reviews and the software artefacts to be changed (e.g., source code and documentation), and thus to localize the potential files to change for addressing the user feedback. In this paper, we propose RISING (Review Integration via claSsification, clusterIng, and linkiNG), an automated approach to support the continuous integration of user feedback via classification, clustering, and linking of user reviews. RISING leverages domain-specific constraint information and semi-supervised learning to group user reviews into multiple fine-grained clusters concerning similar users' requests. Then, by combining the textual information from both commit messages and source code, it automatically localizes potential change files to accommodate the users' requests. Our empirical studies demonstrate that the proposed approach outperforms the state-of-the-art baseline work in terms of clustering and localization accuracy, and thus produces more reliable results.Comment: 15 pages, 3 figures, 8 table
    • …
    corecore