14,146 research outputs found

    The cutting center theorem for trees

    Get PDF
    We introduce the cutting number of a point of a connected graph as a natural measure of the extent to which the removal of that point disconnects the graph. The cutting center of the graph is the set of points of maximum cutting number. All possible configurations for the cutting center of a tree are determined, and examples are constructed which realize them. Using the lemma that the cutting center of a tree always lies on a path, it is shown specifically that (1) for every positive integer n, there exists a tree whose cutting center consists of all the n points on this path, and (2) for every nonempty subset of the points on this path, there exists a tree whose cutting center is precisely that subset.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33655/1/0000164.pd

    Output-Sensitive Tools for Range Searching in Higher Dimensions

    Full text link
    Let PP be a set of nn points in Rd{\mathbb R}^{d}. A point pPp \in P is kk\emph{-shallow} if it lies in a halfspace which contains at most kk points of PP (including pp). We show that if all points of PP are kk-shallow, then PP can be partitioned into Θ(n/k)\Theta(n/k) subsets, so that any hyperplane crosses at most O((n/k)11/(d1)log2/(d1)(n/k))O((n/k)^{1-1/(d-1)} \log^{2/(d-1)}(n/k)) subsets. Given such a partition, we can apply the standard construction of a spanning tree with small crossing number within each subset, to obtain a spanning tree for the point set PP, with crossing number O(n11/(d1)k1/d(d1)log2/(d1)(n/k))O(n^{1-1/(d-1)}k^{1/d(d-1)} \log^{2/(d-1)}(n/k)). This allows us to extend the construction of Har-Peled and Sharir \cite{hs11} to three and higher dimensions, to obtain, for any set of nn points in Rd{\mathbb R}^{d} (without the shallowness assumption), a spanning tree TT with {\em small relative crossing number}. That is, any hyperplane which contains wn/2w \leq n/2 points of PP on one side, crosses O(n11/(d1)w1/d(d1)log2/(d1)(n/w))O(n^{1-1/(d-1)}w^{1/d(d-1)} \log^{2/(d-1)}(n/w)) edges of TT. Using a similar mechanism, we also obtain a data structure for halfspace range counting, which uses O(nloglogn)O(n \log \log n) space (and somewhat higher preprocessing cost), and answers a query in time O(n11/(d1)k1/d(d1)(log(n/k))O(1))O(n^{1-1/(d-1)}k^{1/d(d-1)} (\log (n/k))^{O(1)}), where kk is the output size

    Cutting arcs for torus links and trees

    Full text link
    Among all torus links, we characterise those arising as links of simple plane curve singularities by the property that their fibre surfaces admit only a finite number of cutting arcs that preserve fibredness. The same property allows a characterisation of Coxeter-Dynkin trees (i.e., AnA_n, DnD_n, E6E_6, E7E_7 and E8E_8) among all positive tree-like Hopf plumbings.Comment: 27 pages, 18 figures. Results have been extended to cover all Coxeter-Dynkin trees in the new versio

    Destruction of very simple trees

    Full text link
    We consider the total cost of cutting down a random rooted tree chosen from a family of so-called very simple trees (which include ordered trees, dd-ary trees, and Cayley trees); these form a subfamily of simply generated trees. At each stage of the process an edge is chose at random from the tree and cut, separating the tree into two components. In the one-sided variant of the process the component not containing the root is discarded, whereas in the two-sided variant both components are kept. The process ends when no edges remain for cutting. The cost of cutting an edge from a tree of size nn is assumed to be nαn^\alpha. Using singularity analysis and the method of moments, we derive the limiting distribution of the total cost accrued in both variants of this process. A salient feature of the limiting distributions obtained (after normalizing in a family-specific manner) is that they only depend on α\alpha.Comment: 20 pages; Version 2 corrects some minor error and fixes a few typo

    K1,3K_{1,3}-covering red and blue points in the plane

    Get PDF
    We say that a finite set of red and blue points in the plane in general position can be K1,3K_{1,3}-covered if the set can be partitioned into subsets of size 44, with 33 points of one color and 11 point of the other color, in such a way that, if at each subset the fourth point is connected by straight-line segments to the same-colored points, then the resulting set of all segments has no crossings. We consider the following problem: Given a set RR of rr red points and a set BB of bb blue points in the plane in general position, how many points of RBR\cup B can be K1,3K_{1,3}-covered? and we prove the following results: (1) If r=3g+hr=3g+h and b=3h+gb=3h+g, for some non-negative integers gg and hh, then there are point sets RBR\cup B, like {1,3}\{1,3\}-equitable sets (i.e., r=3br=3b or b=3rb=3r) and linearly separable sets, that can be K1,3K_{1,3}-covered. (2) If r=3g+hr=3g+h, b=3h+gb=3h+g and the points in RBR\cup B are in convex position, then at least r+b4r+b-4 points can be K1,3K_{1,3}-covered, and this bound is tight. (3) There are arbitrarily large point sets RBR\cup B in general position, with r=b+1r=b+1, such that at most r+b5r+b-5 points can be K1,3K_{1,3}-covered. (4) If br3bb\le r\le 3b, then at least 89(r+b8)\frac{8}{9}(r+b-8) points of RBR\cup B can be K1,3K_{1,3}-covered. For r>3br>3b, there are too many red points and at least r3br-3b of them will remain uncovered in any K1,3K_{1,3}-covering. Furthermore, in all the cases we provide efficient algorithms to compute the corresponding coverings.Comment: 29 pages, 10 figures, 1 tabl

    Many 2-level polytopes from matroids

    Get PDF
    The family of 2-level matroids, that is, matroids whose base polytope is 2-level, has been recently studied and characterized by means of combinatorial properties. 2-level matroids generalize series-parallel graphs, which have been already successfully analyzed from the enumerative perspective. We bring to light some structural properties of 2-level matroids and exploit them for enumerative purposes. Moreover, the counting results are used to show that the number of combinatorially non-equivalent (n-1)-dimensional 2-level polytopes is bounded from below by cn5/2ρnc \cdot n^{-5/2} \cdot \rho^{-n}, where c0.03791727c\approx 0.03791727 and ρ14.88052854\rho^{-1} \approx 4.88052854.Comment: revised version, 19 pages, 7 figure

    Unfolding Convex Polyhedra via Radially Monotone Cut Trees

    Get PDF
    A notion of "radially monotone" cut paths is introduced as an effective choice for finding a non-overlapping edge-unfolding of a convex polyhedron. These paths have the property that the two sides of the cut avoid overlap locally as the cut is infinitesimally opened by the curvature at the vertices along the path. It is shown that a class of planar, triangulated convex domains always have a radially monotone spanning forest, a forest that can be found by an essentially greedy algorithm. This algorithm can be mimicked in 3D and applied to polyhedra inscribed in a sphere. Although the algorithm does not provably find a radially monotone cut tree, it in fact does find such a tree with high frequency, and after cutting unfolds without overlap. This performance of a greedy algorithm leads to the conjecture that spherical polyhedra always have a radially monotone cut tree and unfold without overlap.Comment: 41 pages, 39 figures. V2 updated to cite in an addendum work on "self-approaching curves.
    corecore