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Unfolding Convex Polyhedra

via Radially Monotone Cut Trees

Joseph O’Rourke∗

August 1, 2016

Abstract

A notion of “radially monotone” cut paths is introduced as an effective
choice for finding a non-overlapping edge-unfolding of a convex polyhe-
dron. These paths have the property that the two sides of the cut avoid
overlap locally as the cut is infinitesimally opened by the curvature at the
vertices along the path. It is shown that a class of planar, triangulated
convex domains always have a radially monotone spanning forest, a for-
est that can be found by an essentially greedy algorithm. This algorithm
can be mimicked in 3D and applied to polyhedra inscribed in a sphere.
Although the algorithm does not provably find a radially monotone cut
tree, it in fact does find such a tree with high frequency, and after cutting
unfolds without overlap. This performance of a greedy algorithm leads to
the conjecture that spherical polyhedra always have a radially monotone
cut tree and unfold without overlap.

1 Introduction

The question of whether or not every convex polyhedron in R3 has a non-
overlapping edge-unfolding to the plane has been open for many years; see [DO07].
Here I introduce a notion of “radially monotone” cut paths, and show empiri-
cally that for polyhedra inscribed in a sphere (which I’ll call spherical1), there
exists with high frequency a spanning tree composed of radially monotone paths,
and the corresponding unfolding avoids overlap. A 200-vertex example is shown
in Fig. 1.2 This “high frequency” claim contrasts with the near certainty of over-
lap for random spanning cut trees of random spherical polyhedra, as observed
long ago: see Fig. 2, and Fig. 3 for an example of overlap.

Unfortunately, the “almost always” claim is not a theorem, but rather a con-
jecture supported by data. For example, one empirical exploration run found a
radially monotone cut tree for 1,000 random spherical non-obtusely triangulated

∗Department of Computer Science, Smith College, Northampton, MA 01063, USA.
orourke@cs.smith.edu.

1“Inscribed” is often used in the literature.
2 The quality of the figures had to be reduced for the arXiv.
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Figure 1: Left: Polyhedron of 200 vertices inscribed in sphere, with radial
monotone cut tree shown. (The role of the green edges will be explained later.)
Right: Unfolding.
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Figure 2: Each point represents 5,000 unfoldings of spherical polyhedra.
Fig. 22.10 in [DO07, p.315].

2



Figure 3: Unfolding of a 50-vertex spherical polyhedron with several overlaps.

polyhedra, each of 100 vertices, and unfolded all 1,000 without overlap. (This
claim will be hedged a bit in Section 5.3.)

What I have been able to prove is confined to 2D: Theorem 1 says that
“round” convex polygons, meshed with non-obtuse triangles, always possess a
radially monotone spanning forest. The 3D empirical results use an algorithm
that mimics the 2D proof, and relies on a generalization of radial monotonicity
to 3D governed by Theorem 2.

1.1 Definition of Radial Monotonicity in R2

We now define radial monotonicity in 2D; we will not return to 3D until Sec-
tion 4.

1.2 Definition

Let C be a triangulated convex domain in R2, with ∂C its boundary, a convex
polygon. In general C contains many points in its interior that are the vertices of
the triangulation. Let Q = (v0, v1, v2, . . . , vk) be a simple (non-self-intersecting)
directed path of edges of C connecting an interior vertex v0 to a boundary vertex
vk ∈ ∂C.

We say that Q = (v0, v1, . . . , vk) is radially monotone (rm)3 w.r.t. v0 if the
distances from v0 to all points of Q are (non-strictly) monotonically increasing.

3 I will also use “rm” to abbreviate “radially monotone” when convenient and unambiguous.
Also, “w.r.t.” is an abbreviation for “with respect to.”
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(Note that requiring the distance to just the vertices of Q to be monotonically
increasing is not the same as requiring the distance to all points of Q be mono-
tonically increasing.) We define path Q to be radially monotone (without qual-
ification) if it is radially monotone w.r.t. each of its vertices: v0, v1, . . . , vk−1.
Before exploring this definition further, we discuss its intuitive motivation.

1.3 Motivating Intuition

A radial monotone path Q w.r.t. v0 has the property that rigidly rotating Q
and all its incident triangles about v0 by a small angle avoids proper overlap
between the triangles to the left and to the right of Q. One can imagine one
triangle incident to v0 reducing its angle at v0 infinitesimally, as illustrated in
Fig. 4(a). Fig. 4(b) shows that the path illustrated is not radially monotone

Figure 4: Path Q = (v0, v1, . . . , v6) is radially monotone w.r.t. v0, but not w.r.t.
v1.

without qualification, because it is not w.r.t. v1.
The motivation behind the definition of radial monotonicity is as follows.

Ultimately the path Q will be a path of edges on a convex polyhedron P in
R3. At each vertex vi ∈ P, there will be some positive curvature ωi > 0, which
represents the “angle gap” when the neighborhood of vi is flattened to the plane.
We can view ωi as separating the left-half of the cut Q from the right-half at vi.

As a consequence, if a path Q is rm, then “opening” the path with sufficiently
small curvatures ωi at each vi will avoid overlap between the two halves of the
cut path. Whereas if a path is not rm, then there is some opening curvature
assignments ωi to the vi that would cause overlap: assign a positive curvature
ωj > 0 to the first vertex vj at which radial monotonicity is violated, and
assign the other vertices zero or negligible curvatures. Thus rm cut paths are
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locally (infinitesimally) “safe,” and non-rm paths are potentially overlapping.
This potential overlap may not be realizable, for the ωi cannot be assigned
arbitrarily, but must derive from a convex polyhedron. So the guarantee is
one-way:

Radial monotonicty =⇒ safe (non-overlapping) infinitesimal opening.

1.4 Trees and Spanning Forests

Continuing to concentrate on a planar triangulated convex domain C, we extend
the notion of radial monotonicity to trees and forests in the natural manner. A
tree T rooted on a boundary vertex vk ∈ ∂C and containing no other boundary
vertex is radially monotone if the path from every leaf of T to vk is rm. A
radially monotone spanning forest for C is a collection of boundary-rooted rm
trees that span the interior vertices of C.

1.5 Spherical Caps

To presage why we concentrate on convex domains, we turn briefly again to 3D.
Fig. 5 shows a convex cap composed of the faces of a spherical polyhedron whose
normals are within 60◦ of the vertical. We will unfold convex caps via radially
monotone cut forests. And ultimately we will show how to view a complete
spherical polyhedron as a convex cap.

Figure 5: Left: Spherical cap of 147 vertices, with radial monotone cut forest
marked. Right: Unfolding. Green edges are part of ∂C.
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2 Properties of Radially Monotone Paths

We now embark on a rather lengthy description of properties of rm paths in 2D.

2.1 Radial Circles

The condition for Q to be rm w.r.t. v0 can be interpreted as requiring Q to
cross every circle centered on v0 at most once; see Fig. 6. The concentric circles
viewpoint makes it evident that infinitesimal rigid rotation of Q about v0 to Q′

ensures that Q ∩Q′ = {v0}.

v1

v3

v2

    v 0

v4

v5

v6

v1

v3

v2

    v 0

v4

v5

v6

(a) (b)

Figure 6: (a) A chain radially monotone w.r.t. v0. (b) The chain is not radially
monotone w.r.t. v1 (violation at v2), or w.r.t. v3 (violation at v5), or w.r.t. v4
(violation at v5).

An equivalent definition is as follows. Let αj(vi) = ∠(x, vj , vj+1). Then Q
is rm w.r.t. vi if αj(vi) ≥ π/2 for all j > i. For if αj(vi) < π/2, Q violates
monotonicity at vj , and if αj(vi) ≥ π/2, then points along the segment (vj , vj+1)
increase in distance from vi.

2.2 Non-Properties of rm Paths

Let the turn angle τi of path Q at vi be the signed angle between the vectors
vi− vi−1 and vi+1− vi; so τi ∈ [−π, π], with τi = 0 meaning that the joint at vi
is straightened.

It should be clear that no turn angle in a radially monotone path can exceed
π/2: τi ≤ π/2 for all i = 1, . . . , k−1. Although this condition is necessary, it
is not sufficient: if Q = (v0, v1, v2, v3) has unit link lengths, and turn angles
τ1 = τ2 = π/2, forming a u-shape, then Q is not rm w.r.t. v0, violating rm at
v2.
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Note the definition of radial monotonicity considers paths directed from v0
to vk. A path radially monotone in one direction need not be rm when reversed:
see Fig. 7.

v1

v0 v2

v3

Figure 7: Q = (v0, v1, v2, v3) is radially monotone, but its reverse, (v3, v2, v1, v0),
is not rm. Shortcutting the former rm path to (v0, v1, v3) destroys radial mono-
tonicity.

Another property one might hope holds is that shortcutting a rm path Q =
(v0, . . . , vi−1, vi, vi+1, . . . , vk) to Q′ = (v0, . . . , vi−1, vi+1, . . . , vk) would retain
radial monotonicity, but this is false in general, as also illustrated in Fig. 7.

2.3 Searching for rm Paths

We will search for rm paths to form a rm cut forest to unfold a spherical cap.
The search will be incremental, growing existing paths. So we next turn to
properties that will allow a partial rm path to be extended, on either end.
Again we concentrate on a planar convex domain C.

There are two basic strategies: Start from an interior vertex of C, and grow
toward ∂C; or start from a boundary vertex, and grow toward the interior. The
former is attractive because, as Lemma 1 will show, a partial path can always
be grown “forward.” Meanwhile, “backward” growth is not always possible, as
will be shown in Section 2.5. However, so far I have only been able to prove
that a rm spanning forest exists by growing from the boundary inward.

2.4 Forward Extension: O-cone Θj

For path Q = (v0, v1, . . . , vk), let Θj be the range of angles within which (vj+1−
vj) must lie for Q to be rm. We call Θj the o-cone at vj , because its bounding
rays are orthogonal to the cone at vj : the smallest cone with apex at vj within
which all of Q lies. See Fig. 8.
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For segment (vj , vj+1) to be rm w.r.t. vi, that segment must fall outside the
circle centered on vi of radius |vj − vi|. Thus each vi contributes a halfplane
constraint at vj , and it is the intersection of those halfplanes that determine
the o-cone Θj . And clearly the extremes of the o-cone are orthogonal to the
extremes of the cone.

v3
v2

v1
v0

v6

v5

v4

Θ6

v7

Figure 8: The o-cones Θj of a radially monotone path. The cone at v6 (illus-
trated) passes through v3 and v4.

Let |Θj | be the measure of the o-cone angle. The following lemma is not
used in the sequel, and is included just for intuition.

Lemma 1 For any radially monotone path Q = (v0, . . . , vk), |Θj | ∈ [π/2, π] for
all j.

Proof: Initially |Θ1| = π, and assume the claimed bound holds up to vk. Now
consider extending Q with vk+1. The cone for Q encompasses the convex hull
of Q, as illustrated in Fig. 9. Let αk be the angle of the cone. Then the angle of
the o-cone is π−αk. If vk+1 is close to vk on the upper or lower boundary of Θk,
then |Θk+1| approaches π/2 from above as the distance |vk−vk+1| → 0. If vk+1

lies on the line containing (vk−1, vk), and so extends the previous link collinearly,
then |Θk+1| approaches |Θk| as |vk−vk+1| → 0. There is a continuous variation
in |Θk+1| between these extremes for vk+1 arbitrarily close to vk.

Now consider moving vk+1 from near vk along a line that falls within |Θk|.
The cone apex angle αk+1 narrows monotonically, and so |Θk+1| monotonically
increases. So |Θk+1| is always ≥ π/2. And clearly αk+1 ≥ 0 and so |Θk+1| ≤ π.

2.5 Backward Growth

Consider now a rm path Q = (v0, v1, v2, . . . , vk) that we would like to extend
“backwards,” with v′ prior to v0, while retaining rm for Q′ = (v′, v0, v1, . . . , vk).
Define R = R(Q) to be the region of the plane within which v′ can lie while
retaining Q′ rm. Each edge (vi, vi+1) of Q contributes a halfplane constraint
to R: v′ must lie in the halfplane whose boundary is orthogonal to (vi, vi+1),
passes through vi, and excludes vi+1. For otherwise, ∠v′, vi, vi+1 < π/2, and
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vk

Θk

vk+1

αk+1

Θk+1

Figure 9: Θn+1 = π − αn+1 varies from π/2 near vn, to approaching π distant
from vn.

rm w.r.t. v′ would be violated at vi. R is then the intersection of all these
halfplanes; see Fig. 10.

vn
v0

v1

v4

v2

v3R

Figure 10: R is determined here by the halfplanes generated by (v0, v1), (v1, v2),
and (v3, v4).

It is possible that Q cannot be extended backwards at all: R could equal
{v0}, as illustrated in Fig. 11.

2.6 Logarithmic Spirals

Although there is a sense in which radially monotone paths are somewhat
“straight,” in that they increase in distance from v0 and never turn too sharply,
the example in Fig. 11 shows that intuition cannot be pushed too far. In this
section we identify the extreme rm path, which turns out to be an approximately
75◦ logarithmic spiral.
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R

vn

v0

Figure 11: R is the small triangle with one corner v0.

A logarithmic spiral can be expressed in polar coordinates by the equation
r = aebθ. For our purposes we can take the scale factor a to be 1. b = 1/ tanφ,
where φ is the constant angle between the radial vector to a point p on the
curve, and the tangent of the curve at p. This constant angle is the determining
characteristic of such spirals. Fig. 12 shows a typical spiral. When φ = π/2,
the spiral becomes a circle. As θ → −∞, r → 0 and the spiral approaches the
origin.

We can extend the definition of radial monotonicity to apply to smooth
curves: a directed curve is radially monotone if it is rm w.r.t. to every point p on
the curve, i.e., the distance from p to points beyond p on the curve (non-strictly)
increases monotonically. It turns out that the spiral in Fig. 12 is not radially
monotone, but a numerical calculation shows that log spirals with φ ≤ 74.655◦

are radially monotone. Fig. 13 shows the extreme spiral, what I will call a
75◦-spiral.

3 Radially Monotone Forests Exist for Non-Obtuse
Triangulations

In this section we derive our main 2D result, which is the inspiration for the 3D
algorithm to follow.

3.1 Setting

Again we concentrate on be a triangulated domain C whose boundary ∂C is a
convex polygon. Later will impose some conditions on the shape of C and on its

10



-2 -1 1 2 3

-3

-2

-1

1

2

80º

Figure 12: A logarithmic spiral with φ = 80◦. Here θ is plotted out to 2π.

Figure 13: 74.655◦ spiral. The tangent at any point derived from polar angle θ
on the curve makes a 90◦ angle w.r.t. the point at polar angle θ − 3π/2.
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triangulation. Our goal is to find a radially monotone spanning forest F for C.
F is a collection of disjoint trees, each with exactly one vertex on ∂C (its root),
following edges of the triangulation, and spanning all interior vertices (those not
on ∂C). Note that each interior vertex has a unique path to ∂C, because each
interior vertex lies in a unique tree rooted on ∂C.

As mentioned previously, we will eventually turn to 3D when C will be a
spherical cap, and cutting F will permit C to be flattened into the plane as a
single piece. Our goal then will be to avoid overlap in this edge-unfolding. and
a rm-forest guarantees an infinitesimally safe opening.

In 2D, however, C is already flat and cutting F just has the property that
the dual graph of C’s triangulation—with each triangle a node and two trian-
gles adjacent across an uncut edge—is a tree, and so a single piece. The reason
that cutting F leaves C in one piece is the restriction that each tree only touch
the boundary at one vertex. For if a tree touched two boundary vertices, then
it would form a cycle with the portion of ∂C between those vertices, discon-
necting a piece from the remainder. We insist that ∂C be convex because one
can rather easily force overlap in the 3D situation by designing a nonconvex
boundary appropriately. (However, as is clear from Fig. 5, a weaker condition
than convexity may suffice.)

Before commencing, it is important to remark that not every triangulation
with a convex boundary has an rm-forest. See Appendix 1 for a counterexample.
Thus we do need to seek conditions that guarantee existence.

3.2 Overview of Algorithm

Although one could imagine a search over all possible spanning forests, instead
we will implement a tightly regimented greedy search. First, C is placed in
a minimum enclosing circle with center x. Second, the internal vertices are
processed in order of their distance to x, with those closest to ∂C first, and the
closest vertex to x last. So the rm trees are grown inward toward x. Third, we
grow hourglass paths, which are a restricted class of radially monotone paths.
Before describing the details, we sketch the algorithm at a high level in the
boxed pseudocode below.

The order of growth of the trees in the forest F is determined by the
concentric-circle sorting w.r.t. x. The algorithm is greedy in the sense that
among the options (incident triangulation edges) when connecting v0 to some
further-away v1 ∈ F , the “best connection” is selected. For a path of length at
least 2, best is defined as the smallest worst turnangle τi, the angle from the
vector vi − v0 to the vector vi+1 − vi. When τi > π/2, the path is not rm.
Smaller τi means straighter paths, so this is a natural choice.

We need to define what the turnangle means when the path is of length 1,
v0v1 with v1 ∈ ∂C. We use the turnangle from the vector v1−v0 to the tangent
of the circle centered at x through v1. The reason for this choice (which ignores
the orientation of ∂C at v1) will be made clear below.

Note that, when a connection from v0 to v1 is explored for radial monotonic-
ity, it is only necessary to check for rm w.r.t. v0, because by construction the

12



Algorithm 1: Find rm cut forest F for planar C

Input : Convex triangulated domain C, with bounding circle center x
Output: Radially monotone cut forest F
// F is grown from ∂C inward

F ← ∅
Sort interior vertices by distance from center x, those nearest ∂C first.

// Grow F:
foreach vertex v0 in sorted order do

foreach vertex v1 already in F or on ∂C do
Let e = (v0, v1), if e is a triangulation edge.
Check if the path from v0 to ∂C in F + e is radially monotone.
If so, record its worst turnangle τ (with τ > 90◦ not rm).

end
Choose the e∗ that has the best (minimum) τ .
F ← F + e∗

end

path is already known to be rm w.r.t. vi, i > 0, because it was earlier added to
F .

3.3 Hourglass Paths for Halfplanes

To provide intuition for hourglass paths, we first describe them for C a halfplane,
bounded on the right by a vertical line L = ∂C. Imagine the halfplane meshed
with a triangulation.

It will be occasionally more convenient to label the vertices of a path to
increase from ∂C inward rather than the reverse. We will use ui whenever
indexing inward. So Q = (v0, v1, . . . , vk) = (uk, uk−1, . . . , u0) with u0 ∈ ∂C.
So our rm paths will grow from u0 inward to uk (but the direction for radial
monotonicty will still be interior-to-boudary, v0 to vk).

We define an hourglass H as a double cone bounded by two lines meeting at
right angles. The baseline of an hourglass is the line passing through the apexes
of the cones so that the bounding rays make angles of π/4 with the baseline. In
our halfplane example, the baselines are all parallel to L.

We will now imagine growing a path Q from u0 ∈ L = ∂C inward. We
place an hourglass H centered on each ui, and call the cone of H pointing
right, toward ui−1 and the halfplane boundary, the out-cone, and the cone of H
pointing left, toward ui+1 and the interior, the in-cone of H. Finally, define an
hourglass path Q = (u0, . . . , uk) as one for which each edge uiui+1 falls inside
the out-cone of the hourglass at ui and the in-cone of the hourglass at ui+1. See
Fig. 14. Note that, if uiui+1 falls inside the out-cone of ui , then it necessarily
falls within the in-cone of ui+1 . We retain the definition as stated because this
property relies on the parallel baselines of the hourglasses, which will not hold

13



u0
u4

u2

u3

u1

L

∂C

R(q)

Figure 14: The out-cone of the hourglass at u4 falls inside the intersection of
the orthogonal halfplanes (purple) through u1, . . . , u4.
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in more general situations.
Recall from Section 2.5 that we can extend Q “backwards” (inward) to Q =

(u0, . . . , uk, uk+1) only if the edge uk, uk+1 falls within R(Q), the region formed
by halfplane intersections (and which could be a single point). The key point is
that hourglass paths can always extend:

Lemma 2 If Q = (u0, . . . , uk) is an hourglass path in C a halfplane, with
u0 ∈ L, then (a) Q is a radially monotone path, and (b) R(Q) contains the
out-cone at uk.

Proof: The situation is as illustrated in Fig. 14. (a) Note that Q’s direction for
the purposes of radial monotonicity is from uk to u0. Because each hourglass
cone is angled 45◦ w.r.t. the vertical, it must be that the whole path Q falls
within the out-cone at uk. Then consider the angle ∠uk, ui, ui−1 for any ui.
This angle must be at least 90◦, exactly 90◦ if every edge of Q falls on (say) the
lower cone boundaries. Since the argument holds for any pair of vertices of Q,
Q is indeed rm.

(b) R(Q) is the intersection of halfplanes orthogonal to ui−1ui and through
ui. Falling within the hourglass in- and out-cones assures that each edge of
Q makes an angle within ±45◦ of the horizontal, so the halfplanes comprising
R(Q) make angles within ±45◦ of the vertical. Thus their intersection includes
the out-cone at uk.
The import of this lemma is that an hourglass path can be extended inward with
any edge in the in-cone of the hourglass at uk, and remain radially monotone.

So far we have ignored the triangulation mesh of the halfplane C. A trian-
gulation is called a non-obtuse triangulation if no triangle angle strictly exceeds
π/2, i.e., is obtuse. If the halfplane C is non-obtusely triangulated, then the
in-cone at uk necessarily contains some triangulation edge (because the cone
angle is 90◦).

Now imagine executing Algorithm 1 on this halfplane C, except with the
concentric circles replaced by the vertical lines through each vertex of the trian-
gulation (effectively, infinite-radii concentric circles). Suppose we have grown a
forest that connects every vertex strictly right of v to ∂C, and we seek to con-
nect v to grow this forest. It should be clear that the out-cone of the hourglass
at v must contain an edge of the non-obtuse triangulation, and so can indeed
be connected by extending a radially monotone path.

3.4 Hourglass Paths for Convex C

Now we turn back to the less contrived situation of a convex domain C, but
again non-obtusely triangulated. Every planar straight-line graph on n vertices
has a conforming non-obtuse triangulation of O(n2.5) triangles [Bis16]. We will
follow Algorithm 1 just as in the halfplane case, but now the proofs are no longer
straightforward. A sample result of applying the algorithm is shown in Fig. 15.

15



Figure 15: A 56-vertex example, with several concentric circles shown. The cut
forest F is marked (red).

3.5 Theorem Statement

Although I have no counterexample for arbitrary convex domains C, the proof
below restricts C to those that “nicely” fit within the minimal bounding circle
B. Define a convex domain C as round if the neighborhood of every vertex
v ∈ ∂C contains the in-cone of the hourglass H at v, where the baseline of H is
tangent to the circle through v centered at the center x of B.

Theorem 1 Let C be a non-obtusely triangulated round convex domain. Then
C has an radially monotone spanning forest.

3.6 Proof of Theorem 1

Let C be a round convex domain, with bounding circle B centered on x. We
define the hourglass H at a vertex v to have baseline tangent to the circle
through v centered on x. Let Q = (u0, . . . , uk) be a path of edges in C, with
u0 ∈ ∂C. We say that Q is an hourglass path if each edge uiui+1 falls within
the in-cone at ui and the out-cone at ui+1. See Fig. 16. We need to prove three
results to achieve Theorem 1:

1. An hourglass path is radially monotone: Lemma 4.

2. The in-cone at the last vertex uk is inside the region R(Q), so that Q can
be extended inward: Lemma 5.

16



u0

u2

u3

u4

u1

B

x

Figure 16: An hourglass path walks between concentric circles.

3. For the next vertex v to be processed, any connection within its out-cone
to an earlier processed vertex v′ falls within the in-cone of v′: Lemma 3.

Lemma 3 Let v be a vertex at distance 1 from B’s center x. Then for every
vertex v′ within the out-cone of v at distance r > 1 from x, the in-cone of v′

includes v.

Proof: Refer to Fig. 17. The vertices within the out-cone of v each cover v
with their in-cones. The extreme case occurs when r → 1 and a vertex v′ lies
on the boundary of the out-cone of v. For all v′ within the out-cone of v, the
edge vv′ lies in both the out-cone of v (by assumption) and within the in-cone
of v′. The consequence of this lemma is that a connection to an hourglass
path that terminates at v′ by the edge vv′ will maintain the grown path as an
hourglass path.

The next two lemmas seem technically difficult, and my current arguments
depend on numerical computations, but numerical arguments which I believe
are convincing and could be converted to analytical proofs with effort. I will
continue to call them “lemmas” with the understanding they are (justified)
claims at this point.

Lemma 4 Hourglass paths are radially monotone.

Proof: Let Q be an hourglass path, ending at innermost vertex a, which lies
on a circle of radius 1. Let b be an arbitrary point on Q. We need to prove that
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v

x

r 1

v´

Figure 17: v is covered by the in-cone of any vertex v′ that falls within the
out-cone of v.

the angle ab makes with the next edge bc of Q beyond (outward) of b is at most
90◦. We know that edge lies in the out-cone of b, because Q is an hourglass
path. The situation is illustrated in Fig. 18. From that figure, we need to show
that β ≤ 45◦ for any r = |ab|.

Fig. 19 plots the angle β as a function of r and α, which two parameters
(together with the assumption w.l.o.g. that |ax| = 1) completely determine β.
It is clear that in fact β can exceed 45◦. However, the region of (r, α) values in
which β > 45◦ cannot occur with an hourglass curve.

The extreme values of α occur when Q is a 45◦-spiral, that is, when the
path turns as much as possible clockwise within the confines of the hourglass
constraints at each vertex. The maximum turn occurs in the smooth case, when
the spacing between the vertices along Q approaches zero. It is easy to compute
the (r, α) values achieved by this 45◦-spiral. Fig. 20 shows that only at r = 1
and α = 45◦ does the spiral values touch the boundary of the forbidden β region.
Other less extreme Q avoid the forbidden region entirely. The figure also shows
that other hourglass paths are less extreme than the 45◦-spiral.

Finally we show that the in-cone of the last vertex of an hourglass curve is
not “clipped,” which means it can be extended.

Lemma 5 Let Q be an hourglass curve, ending at innermost vertex a. Then
the region R(Q) includes the in-cone of the hourglass at a as far as the center
x.

Proof: We assume the same setup as in the previous lemma: |ax| = 1. Again
the issue is decided by the extreme curve, a 45◦-spiral. Fig. 21 illustrates the
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Figure 18: Lemma 4 is proved if β ≤ 45◦.

Figure 19: The β ≥ 45◦ region for all (r, α) combinations.
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Figure 20: Hourglass paths never enter the β ≥ 45◦ region. The green curves
show (r, α) pairs for random hourglass paths.
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challenge: each edge along the spiral generates a halfplane constraint that con-
tributes to R(Q). The triangle subset of the in-cone of a must not be clipped by
any of these halfplanes–i.e., the halfplanes must include corner c of the triangle–
or future inward growth of the hourglass path could be compromised.

For a point b at polar coordinates (r, θ), r = seπ/2−θ, we need the angle
β = ∠xbc ≤ 45◦. (Note: this β is not the same as β in the previous lemma.)
The angle β “consumes” a portion of the 45◦ between r and the halfplane. Thus
only if β > 45◦ does the halfplane clip c. Fig. 22 shows that cosβ ≥

√
2/2, only

equaling that value when θ = 90◦, when a = b. This makes sense, as the first
tangent to the spiral curve at point a is at 45◦ w.r.t. the horizontal, and then
the halfplane passes through, but does not clip off, corner c.
That the same degeneracy a = b occurs in both of the previous two lemmas
suggests there may be a uniting viewpoint.

a
1

x

b

45°r

c

θ

β

Figure 21: Circle tangents are green. Orthogonal halfplane boundaries black.
The halfplanes do not clip corner c.

Now we have proven Theorem 1 which proves that Algorithm 1 works on
round, non-obtusely triangulated convex domains: the algorithm always finds a
spanning forest composed of hourglass paths, which are radially monotone. The
restriction to round convex domains was imposed to enable the first edge of a
path starting from a vertex on ∂C to fall within the hourglass in-cone there. It
is likely that this roundness assumption is not necessary. Moreover, I believe
even the convex assumption is not necessary: likely only star-shapedness from
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Figure 22: When cosβ >
√

2/2, β < 45◦.

x is needed.
The insistence on a non-obtuse triangulation, however, is crucial, as the

example in Appendix 1 demonstrates.
One might wonder whether the 45◦-spiral, which plays a prominent role in

the analysis, can actually occur in a non-obtuse triangulation. The answer is
yes: see Fig. 23.

3.7 More Examples

Several more examples are shown in Fig. 24.

4 Radial Monotone Paths in 3D

Although the whole point of radial monotone paths is to cut open polyhedra
via such paths, I have yet to define what the notion means on a polyhedron in
R3. There is more than one way to generalize the notion, but I have focused on
one generalization that I find natural. We assume henceforth that C is a convex
cap with boundary ∂C a topological circle, i.e., C is a simply connected subset
of the faces of a convex polyhedron. The earlier Fig. 5 shows such a convex cap.
All of our empirical explorations also assume that the polyhedron from which
C is derived is spherical: all vertices on a sphere S.

Under these circumstances, we define a pathQ of edges of C, Q = (v0, . . . , vk)
with vk ∈ ∂C to be radially monotone if the medial path M(Q) is radially mono-
tone. The next section explains and justifies this definition.
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Figure 23: Radially monotone 45◦-spiral spanning forest in a non-obtuse trian-
gulation.
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Figure 24: Radially monotone spanning forests found by Algorithm 1.
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4.1 LMR-Chains

Let ωi be the curvature at vi. As usual, we view v0 as a leaf of a cut forest,
which will then serve as the end of a cut path, and the “source” of opening that
path.

Let λi be the angle at vi left of Q, and ρi the angle right of Q there. So
λi + ωi + ρi = 2π. Define L to be the planar path from the origin with left
angles λi, R the path with right angles ρi, and M the medial path with left
angles λi−ωi/2 (and therefore right angles ρi+ωi/2). (Each of these paths are
understood to depend on Q: L = L(Q) etc.) We label the vertices of the paths
`i,mi, ri, with m0m1 on the x-axis. See Fig. 25.

0 1

2

3 4

5

6

7

8

L M

R

Figure 25: The three paths L,M,R. Here M is radially monotone but L is not.

The intuition behind the focus on M(Q) is two-fold: (1) It is important
to allow either or both of L and R to be non-rm; (2) One can prove that
L∩R = {v0} for much more than infinitesimal openings caused by the curvature
encountered along Q.

Let Ω =
∑
i ωi along Q: The total curvature of all the vertices on the cut

path. Let τ(M) be the maximum ± turn of the edge vectors in M : the largest
absolute value the vector mi −mi−1 makes with the x-axis.

Our goal is to prove this theorem:

Theorem 2 If path M is radially monotone, and in addition, τ(M) ≤ π/2 and
Ω ≤ π, then none of the three paths L, M , and R cross one another.

The reason for the angle restrictions is that, without some restrictions, the claim
could be false. Fig. 26 shows a 70◦-spiral M with τ(M) > (3/2)π and Ω = 2π,
where L crosses R. Restricting τ(M) < π and Ω ≤ π avoids crossing; see
Fig. 27. I do not believe the angle restrictions are close to tight. For example,
the theorem seems to hold for τ(M) < 2π and Ω ≤ π, and for τ(M) < π and
Ω ≤ 2π. The severe angle restrictions are imposed to obtain a clean proof. And
they seem to suffice for non-overlap of random spherical polyhedra.
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Figure 26: A 70◦-spiral M , with Ω = 2π. L crosses R right-to-left.
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Figure 27: Ω = π so the last tangents to L and R are 180◦ apart. Here
τ(M) < π.
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We prove Theorem 2 via two lemmas.

Lemma 6 Under the conditions stated, L cannot cross M left-to-right.

Proof: (Crossing right-to-left will be excluded by the next lemma.) The proof
is by induction. It clearly holds for k = 1, when M is just a single edge, and L
is rotated ω0 ccw of M .

Suppose the claim is true for k. So the situation is like that shown in Fig. 25.
Imagine extending M prior to v0, to a vertex v′. Then the L path is rigidly
rotated ccw by ω′. The new path L′ is strictly further away from M along the
concentric circles centered on v′. See Fig. 28.

L

M

L´

v´ 0
1

Figure 28: Extending the L and M paths in Fig. 25 by one edge v′v0. (R not
shown.)

Lemma 7 Under the conditions stated, L cannot cross R right to left.

Proof: With the convention that m1 − m0 aims along the +x-axis, the re-
striction τ(M) ≤ π/2 implies that all the edge vectors of M point in the +x-
halfplane. The restriction Ω ≤ π turns the vectors of M to point into the
+y-halfplane for L; recall λi is turned ccw ωi/2 from the corresponding M
angle. Similarly the vectors of M are turned cw ωi/2 and so point into the
−y-halfplane. Thus L lies entirely in the upper halfplane and R in the lower,
so they cannot cross.
These two lemmas prove Theorem 2.

5 Algorithm 2: Finding a Radially Monotone
Cut Tree

Using the definition in the previous section, we now suggest an “algorithm” to
find a radially monotone cut tree for a convex polyhedron. The algorithm does
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not provably succeed, even on spherical non-obtusely triangulated polyhedra.
But its strong empirical performance suggests some variant might provably suc-
ceed. For now, I just describe the decisions made to achieve a definite algorithm.

There are five decisions that drive the algorithm:

1. Attention is restricted to spherical polyhedra P, vertices inscribed in a
sphere S.

2. Latitude circles on S are used to mimic the concentric circles employed in
the 2D Algorithm 1.

3. The algorithm constructs trees from paths Q on P whose planar medial
paths M(Q) are radiallly monotone.

4. The full P is treated as a convex cap C with boundary ∂C.

5. Hourglass paths are abandoned.

We now remark on each of these decisions.

(1) Spherical polyhedra are special because of their relationship to Delaunay
triangulations, a point to which we will return later. Outside of this class, the
algorithm is far less successful. For example, it fails to find a rm cut tree for
more than 50% of 100-vertex random polyhedra inscribed in an ellipsoid with
axes (1, 1, 14 ). See Fig. 29.

Figure 29: Overlap. The 100-vertex polyhedron is drawn from an ellipsoid
with axes (1, 1, 14 ). The three marked vertices could not be joined radially
monotonically to the cut forest. Two of the non-rm cuts cause overlap in the
unfolding.
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(2) In order to mimic the successful 2D Algorithm 1, we process the vertices
in order of their geodesic distance from the north pole N , furthest first; see
Fig. 30. We view v as lying on a planar circle centered on N with radius γ.

Figure 30: Concentric circles representing latitude lines on S.

(3) We have already justified the concentration on medial rm cut paths in
Section 4.1: the unfolded two sides of the cut do not intersect (Theorem 2).

(4) Fig. 5 showed a convex cap with a jagged boundary ∂C. One can extend
a convex cap of polyhedron P by removing just one triangle 4abc from P: then
the convex “cap” is all but that one triangle. Even further, one can remove
an infinitesimal slice around the boundary of that triangle, the nonconvex de-
generate quadrilateral ∂C = (a, b, c, b). Then C includes every face of the full
P.

Returning to our first figure, Fig. 1, the green V-shape represents that in-
finitely thin quadrilateral ∂C. The rm cut forest F is grown from ∂C, and
connected to a tree by the two edges ab and bc.

For our experiments with random spherical polyhedra, we added north- and
south-pole points N and S, just for coding convenience. N plays the role of the
2D bounding circle center x in Algorithm 1, and S is a vertex of 4abc. This is
illustrated more clearly in Fig. 31, which shows the three trees grown from ∂C.

(5) The reason I abandoned hourglass paths is that, under various generaliza-
tions, they did not always seem to exist. They were a specific tool to prove that
Algorithm 1 finds rm forests in 2D, but seem less useful in 3D.
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Figure 31: P has n = 50 vertices. N and S label the north and south poles
respectively.
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5.1 More Examples

Figs. 32, 33, 34, and Figs. 35 and 36, show four more example unfoldings.

Figure 32: Cut tree and unfolding of a polyhedron of n = 300 vertices.

5.2 Algorithm 2

The algorithm is detailed below.

5.3 Empirical Results

Algorithm 1 only provably works on planar convex domains when they are non-
obtusely triangulated, but the 3D examples we have so far provided contain
obtuse triangles: They were generated simply as convex hulls of random points
on a sphere S, partly because it is by no means straightforward to generate non-
obtuse triangulations, and partly because Algorithm 2 works with empirically
high frequency on spherical polyhedra.

My experiments show that Algorithm 2 finds a radial monotone cut tree
T for more than 95% of random spherical polyhedra of n = 100 vertices. For
example, in one run, 20 out of 1,000 polyhedra led to one (never more than
one) vertex forced to select a non-rm connection. In all cases, the “cause”
was an obtuse triangle, which if split, led to a rm-tree and a non-overlapping
unfolding. Another run of 400 random 200-vertex spherical polyhedra found 21
single-vertex non-rm connections (95%).
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Figure 33: Unfolding of a polyhedron of n = 500 vertices.
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Figure 34: Unfolding of a polyhedron of n = 1000 vertices.
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Figure 35: Spanning radial monotone cut tree for polyhedron of n = 1500 ver-
tices. North pole marked on top; tree root not visible at south pole. Unfolding
in Fig. 36.

34



Figure 36: Unfolding of polyhedron (Fig. 35) of n = 1500 vertices.
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Algorithm 2: Find rm cut forest F for polyhedron P
Input : Convex polyhedron P inscribed in sphere S
Output: (Usually) Radially monotone cut tree T
Find “bottommost” triangle 4abc (most southward normal).
Set ∂C = (a, b, c, b).

// Grow F from ∂C upward/inward

Sort interior vertices by geodesic distance on S from north-pole N , those
nearest ∂C first.

// Grow F:
F ← ∅
foreach vertex v0 in sorted (vertically ascending) order do

foreach vertex v1 already in F or on ∂C do
// v1 is below v0.
If v0 connects by a triangulation edge to v1, set e = (v0, v1).
Check if the planar medial path M(Q) from v0 to ∂C in F + e is
radially monotone.
If so, record its worst turnangle τ (with τ > 90◦ not rm).

end
Choose the e∗ that has the best (minimum) τ .
Or: report failure to find a radially monotone connection & exit.
F ← F + e∗

end
Return T ← F + ab+ bc
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Fig. 37 shows a typical example. Fig. 37(a) shows the one vertex that makes
a non-rm cut, in this case with turnangle 94◦. This angle in fact causes (barely
visible) overlap in the unfolding. Fig. 37(b) shows the same polyhedron with
many obtuse angles split, splitting the most common situation: one obtuse
triangle adjacent to a non-obtuse triangle. Now a different radially monotone
cut tree is found, in particular, resolving the problematic overlap.

(a) (b)

Figure 37: (a) P of n = 100 vertices, with non-rm vertex cut marked. (b) The
same P with many obtuse angles split, now of n = 203 vertices.

Caveats. Although it is quite clear what constitutes a random spherical
polyhedron—the convex hull of random points on a sphere—it is less clear what
is a random non-obtusely triangulated spherical polyhedron. And in any case,
the obtuse-splitting procedure I employed is ad hoc, and creates “vertices” of
curvature 0 not touching S. So I cannot make any justified empirical claims
concerning the performance of Algorithm 2 on such polyhedra.

Moreover, the 1,000 examples mentioned in the Introduction were achieved
by (a) running Algorithm 2 on spherical polyhedra, and then, for each case
where a rm tree was not found, (b) rerunning it with obtuse triangles split as
in Fig. 37.

However, I would like to emphasize that Algorithm 2 does not in any way
“search” for a radially monotone cut tree: It uses whatever happens to be the
bottommost triangle to form ∂C, and then it grows the spanning forest strictly
in order of the geodesic circle radii illustrated in Fig. 30. It never backtracks
or considers alternatives (aside from choosing the “best” rm connection among
those available below). One could apply many heuristics to improve perfor-
mance. In fact, when I included several such heuristics— selecting the “most
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equilateral” triangle to become bottommost (to maximally separate the three
spanning tree roots of F), and not following the concentric circle ordering, but
rather growing F with the “best” connection (in any direction) at each stage—
the heuristic-laden algorithm found rm cut trees with such high frequency I
could not find a random counterexample.

6 Questions & Conjectures

Algorithm 2 finds radially monotone cut trees for random spherical polyhedra
with high frequency, and then (because of Theorem 2, whose bounds apparently
suffice for random polyhedra), unfolds them without overlap. Triangulations of
spherical polyhedra are special: They are intimately connected to Delaunay
triangulations. This suggests:

Question 1 Does every planar Delaunay triangulation have a radially mono-
tone spanning forest?

Note that the example in Appendix 1 (Fig. 39) is non-Delaunay. Also note that
non-obtuse triangulations are automatically Delaunay. The 3D analog is:

Question 2 Does every spherical (inscribed) polyhedron have a radially mono-
tone cut tree?

My empirical explorations only suggest that this may hold for random spherical
polyhedra.

Question 3 Does every non-obtusely triangulated convex polyhedron have a ra-
dially monotone cut tree?

I have so far not explored non-spherical polyhedra enough to form an opinion
on this question, but radial monotonicity seems intimately connected to non-
obtuseness.

Question 4 What is a natural definition of a random, spherical (inscribed in
a sphere), non-obtusely triangulated polyhedron? And how could they be gener-
ated?

Without an answer to this question, the following conjecture is vague, but nev-
ertheless, I feel is justified:

Conjecture 1 A random spherical, non-obtusely triangulated polyhedron has a
radially monotone cut tree (as defined in Sec. 4) with high probability.

More risky is the same conjecture without requiring the triangulation to be
non-obtuse:

Conjecture 2 A random spherical polyhedron has a radially monotone cut tree
with high probability.

One natural interpretation of “high probability” would be that, as the number
of vertices n→∞, the probability goes to 1. This would essentially constitute
an obverse of Fig. 2, which shows (empirically) that the probability of overlap
from a random spanning cut tree goes to 1.
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Addendum. Anna Lubiw4 informed me that my radially monotone paths are
the same as backwards “self-approaching curves,” introduced in [IKL99], and
explored in several papers since then. Their definition for a curve C is: “for any
three consecutive points a, b, c in oriented order on C, the inequality d(a, c) ≥
d(b, c) holds.” These curves have been studied for their length properties and
applications to graph drawing and routing in planar geometric graphs. Some
of the elementary properties I prove for radially monotone paths were earlier
derived in this literature.

4Personal communication, 27 July 2016.
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7 Appendix 1

Figure 38: A plane graph that cannot be spanned by an rm-forest. The circles
indicate rm violations.

We first provide a counterexample for a plane graph, and then modify it to
achieve a triangulation.

Lemma 8 The plane graph G shown in Fig. 38 has no rm-forest. G has strictly
convex faces, and a convex boundary ∂C.

Proof: Let F be an rm-forest for G, and let Q the unique path in a tree of F
from x to ∂G.

1. The four edges incident to x are symmetric, so we choose (x, ab) wlog.
There are two choices from ab.

2. Q = (x, ab, a, a′) is non-monotonic at ab w.r.t. x: (ab, a) cuts into the
circle centered at x passing through ab.

3. (x, ab, b) is radially monotone.

4. Extending this path with the up edge (b, ab′) violates radial monoton-
icty at b w.r.t. ab. So it must be instead extended downward, to Q =
(x, ab, b, cd′).

5. (x, ab, b, cd′) cannot be extended to either Q = (x, ab, b, cd′, c′) nor Q =
(x, ab, b, cd′, b′) monotonically: the former violates radial monotonicity at
cd′ w.r.t. x; the latter violates at cd′ w.r.t. b.

Because of the symmetries of G, this exhausts all possible paths from x to ∂G.

40



The pentagon face (a, ab, b, ab′, a′) and the quadrilateral face (b, ab′, b′, cd′)
are non-strictly convex faces, but can be made strictly convex by slight move-
ments of ab and b respectively, without changing altering the monotonicity of
any paths.
The claim in Lemma 8 can be strengthened to a triangulation:

Lemma 9 The triangulated plane graph GT shown in Fig. 39 has no rm-forest.

Proof: Sketch. The structure of GT is based on that of G in Lemma 8: GT is
a triangulation of G. Although there are now more paths from x to ∂GT , they
each still violate monotonicity, either w.r.t. x, or w.r.t. b.

Figure 39: A triangulated plane graph that cannot be spanned by an rm-forest.
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