29,842 research outputs found

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    A literature synthesis of personalised technology-enhanced learning: what works and why

    Get PDF
    Personalised learning, having seen both surges and declines in popularity over the past few decades, is once again enjoying a resurgence. Examples include digital resources tailored to a particular learner’s needs, or individual feedback on a student’s assessed work. In addition, personalised technology-enhanced learning (TEL) now seems to be attracting interest from philanthropists and venture capitalists indicating a new level of enthusiasm for the area and a potential growth industry. However, these industries may be driven by profit rather than pedagogy, and hence it is vital these new developments are informed by relevant, evidence-based research. For many people, personalised learning is an ambiguous and even loaded term that promises much but does not always deliver. This paper provides an in-depth and critical review and synthesis of how personalisation has been represented in the literature since 2000, with a particular focus on TEL. We examine the reasons why personalised learning can be beneficial and examine how TEL can contribute to this. We also unpack how personalisation can contribute to more effective learning. Lastly, we examine the limitations of personalised learning and discuss the potential impacts on wider stakeholders

    Distributed Learning System Design: A New Approach and an Agenda for Future Research

    Get PDF
    This article presents a theoretical framework designed to guide distributed learning design, with the goal of enhancing the effectiveness of distributed learning systems. The authors begin with a review of the extant research on distributed learning design, and themes embedded in this literature are extracted and discussed to identify critical gaps that should be addressed by future work in this area. A conceptual framework that integrates instructional objectives, targeted competencies, instructional design considerations, and technological features is then developed to address the most pressing gaps in current research and practice. The rationale and logic underlying this framework is explicated. The framework is designed to help guide trainers and instructional designers through critical stages of the distributed learning system design process. In addition, it is intended to help researchers identify critical issues that should serve as the focus of future research efforts. Recommendations and future research directions are presented and discussed

    Improved computation of individual ZPD in a distance learning system

    Get PDF
    This paper builds upon theoretical studies in the field of social constructivism. Lev Vygotsky is considered one of the greatest representatives of this research line, with his theory of the Zone of Proximal Development (ZPD). Our work aims at integrating this concept in the practice of a computer-assisted learning system. For each learner, the system stores a model summarizing the current Student Knowledge (SK). Each educational activity is specified through the deployed content, the skills required to tackle it, and those acquired, and is further annotated by the effort estimated for the task. The latter may change from one student to another, given the already achieved competence. A suitable weighting of the robustness (certainty) of student’s skills, stored in SK, and their combination are used to verify the inclusion of a learning activity in the student’s ZPD. With respect to our previous work, the algorithm for the calculation of the ZPD of the individual student has been optimized, by enhancing the certainty weighting policy, and a graphical display of the ZPD has been added. Thanks to the latter, the student can get a clear vision of the learning paths that he/she can presently tackle. This both facilitates the educational process, and helps developing the metacognitive ability self-assessment

    Adaptive development and maintenance of user-centric software systems

    Get PDF
    A software system cannot be developed without considering the various facets of its environment. Stakeholders – including the users that play a central role – have their needs, expectations, and perceptions of a system. Organisational and technical aspects of the environment are constantly changing. The ability to adapt a software system and its requirements to its environment throughout its full lifecycle is of paramount importance in a constantly changing environment. The continuous involvement of users is as important as the constant evaluation of the system and the observation of evolving environments. We present a methodology for adaptive software systems development and maintenance. We draw upon a diverse range of accepted methods including participatory design, software architecture, and evolutionary design. Our focus is on user-centred software systems

    A user profiling component with the aid of user ontologies

    Get PDF
    Abstract: What follows is a contribution to the field of user modeling for adaptive teaching and learning programs especially in the medical field. The paper outlines existing approaches to the problem of extracting user information in a form that can be exploited by adaptive software. We focus initially on the so-called stereotyping method, which allocates users into classes adaptively, reflecting characteristics such as physical data, social background, and computer experience. The user classifications of the stereotyping method are however ad hoc and unprincipled, and they can be exploited by the adaptive system only after a large number of trials by various kinds of users. We argue that the remedy is to create a database of user ontologies from which readymade taxonomies can be derived in such a way as to enable associated software to support a variety of different types of users

    Adaptive learning program for developing employability skills

    Get PDF
    The paper aims to demonstrate the benefits of adaptive learning technologies as a viable alternative to time consuming tutor led individual support. It proposes to reveal how adaptive learning interventions can be effective in enriching student learning while targeting precise areas of development. This review will compile evidence on the nature and extent of Adaptive Learning tools used to develop employability skills among Higher Education institutions. This will be specifically for students undergoing studies at the graduate level. Given the short time available, a scoping study framework will be used to examine the scope of carrying out a full systematic review or identifying gaps in existing literature (Arksey and O’Malley, 2005). This design follows the general principles of a systematic review by following pre‐specified methods to reduce the risk of bias by selecting favourable studies, and extracting and analysing data that backs a particular hypothesis. That is, the methods are determined a priori, and are transparent and replicable
    corecore