3 research outputs found

    The Connectivity and the Harary Index of a Graph

    Full text link
    The Harary index of a graph is defined as the sum of reciprocals of distances between all pairs of vertices of the graph. In this paper we provide an upper bound of the Harary index in terms of the vertex or edge connectivity of a graph. We characterize the unique graph with maximum Harary index among all graphs with given number of cut vertices or vertex connectivity or edge connectivity. In addition we also characterize the extremal graphs with the second maximum Harary index among the graphs with given vertex connectivity

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group
    corecore