47 research outputs found

    Kolmogorov complexity and computably enumerable sets

    Full text link
    We study the computably enumerable sets in terms of the: (a) Kolmogorov complexity of their initial segments; (b) Kolmogorov complexity of finite programs when they are used as oracles. We present an extended discussion of the existing research on this topic, along with recent developments and open problems. Besides this survey, our main original result is the following characterization of the computably enumerable sets with trivial initial segment prefix-free complexity. A computably enumerable set AA is KK-trivial if and only if the family of sets with complexity bounded by the complexity of AA is uniformly computable from the halting problem

    Computability Theory

    Get PDF
    Computability is one of the fundamental notions of mathematics, trying to capture the effective content of mathematics. Starting from Gödel’s Incompleteness Theorem, it has now blossomed into a rich area with strong connections with other areas of mathematical logic as well as algebra and theoretical computer science

    Computational Problems in Metric Fixed Point Theory and their Weihrauch Degrees

    Full text link
    We study the computational difficulty of the problem of finding fixed points of nonexpansive mappings in uniformly convex Banach spaces. We show that the fixed point sets of computable nonexpansive self-maps of a nonempty, computably weakly closed, convex and bounded subset of a computable real Hilbert space are precisely the nonempty, co-r.e. weakly closed, convex subsets of the domain. A uniform version of this result allows us to determine the Weihrauch degree of the Browder-Goehde-Kirk theorem in computable real Hilbert space: it is equivalent to a closed choice principle, which receives as input a closed, convex and bounded set via negative information in the weak topology and outputs a point in the set, represented in the strong topology. While in finite dimensional uniformly convex Banach spaces, computable nonexpansive mappings always have computable fixed points, on the unit ball in infinite-dimensional separable Hilbert space the Browder-Goehde-Kirk theorem becomes Weihrauch-equivalent to the limit operator, and on the Hilbert cube it is equivalent to Weak Koenig's Lemma. In particular, computable nonexpansive mappings may not have any computable fixed points in infinite dimension. We also study the computational difficulty of the problem of finding rates of convergence for a large class of fixed point iterations, which generalise both Halpern- and Mann-iterations, and prove that the problem of finding rates of convergence already on the unit interval is equivalent to the limit operator.Comment: 44 page

    Optimal asymptotic bounds on the oracle use in computations from Chaitin’s Omega

    Get PDF
    Chaitin’s number is the halting probability of a universal prefix-free machine, and although it depends on the underlying enumeration of prefix-free machines, it is always Turing-complete. It can be observed, in fact, that for every computably enumerable (c.e.) real �, there exists a Turing functional via which computes �, and such that the number of bits of that are needed for the computation of the first n bits of � (i.e. the use on argument n) is bounded above by a computable function h(n) = n + o (n). We characterise the asymptotic upper bounds on the use of Chaitin’s in oracle computations of halting probabilities (i.e. c.e. reals). We show that the following two conditions are equivalent for any computable function h such that h(n)

    Randomness and Computability

    No full text
    This thesis establishes significant new results in the area of algorithmic randomness. These results elucidate the deep relationship between randomness and computability. A number of results focus on randomness for finite strings. Levin introduced two functions which measure the randomness of finite strings. One function is derived from a universal monotone machine and the other function is derived from an optimal computably enumerable semimeasure. Gacs proved that infinitely often, the gap between these two functions exceeds the inverse Ackermann function (applied to string length). This thesis improves this result to show that infinitely often the difference between these two functions exceeds the double logarithm. Another separation result is proved for two different kinds of process machine. Information about the randomness of finite strings can be used as a computational resource. This information is contained in the overgraph. Muchnik and Positselsky asked whether there exists an optimal monotone machine whose overgraph is not truth-table complete. This question is answered in the negative. Related results are also established. This thesis makes advances in the theory of randomness for infinite binary sequences. A variant of process machines is used to characterise computable randomness, Schnorr randomness and weak randomness. This result is extended to give characterisations of these types of randomness using truthtable reducibility. The computable Lipschitz reducibility measures both the relative randomness and the relative computational power of real numbers. It is proved that the computable Lipschitz degrees of computably enumerable sets are not dense. Infinite binary sequences can be regarded as elements of Cantor space. Most research in randomness for Cantor space has been conducted using the uniform measure. However, the study of non-computable measures has led to interesting results. This thesis shows that the two approaches that have been used to define randomness on Cantor space for non-computable measures: that of Reimann and Slaman, along with the uniform test approach first introduced by Levin and also used by Gacs, Hoyrup and Rojas, are equivalent. Levin established the existence of probability measures for which all infinite sequences are random. These measures are termed neutral measures. It is shown that every PA degree computes a neutral measure. Work of Miller is used to show that the set of atoms of a neutral measure is a countable Scott set and in fact any countable Scott set is the set of atoms of some neutral measure. Neutral measures are used to prove new results in computability theory. For example, it is shown that the low computable enumerable sets are precisely the computably enumerable sets bounded by PA degrees strictly below the halting problem. This thesis applies ideas developed in the study of randomness to computability theory by examining indifferent sets for comeager classes in Cantor space. A number of results are proved. For example, it is shown that there exist 1-generic sets that can compute their own indifferent sets

    Finding subsets of positive measure

    Full text link
    An important theorem of geometric measure theory (first proved by Besicovitch and Davies for Euclidean space) says that every analytic set of non-zero ss-dimensional Hausdorff measure Hs\mathcal H^s contains a closed subset of non-zero (and indeed finite) Hs\mathcal H^s-measure. We investigate the question how hard it is to find such a set, in terms of the index set complexity, and in terms of the complexity of the parameter needed to define such a closed set. Among other results, we show that given a (lightface) Σ11\Sigma^1_1 set of reals in Cantor space, there is always a Π10(O)\Pi^0_1(\mathcal{O}) subset on non-zero Hs\mathcal H^s-measure definable from Kleene's O\mathcal O. On the other hand, there are Π20\Pi^0_2 sets of reals where no hyperarithmetic real can define a closed subset of non-zero measure.Comment: This is an extended journal version of the conference paper "The Strength of the Besicovitch--Davies Theorem". The final publication of that paper is available at Springer via http://dx.doi.org/10.1007/978-3-642-13962-8_2
    corecore