35,723 research outputs found

    The complexity of solution-free sets of integers for general linear equations

    Get PDF
    Given a linear equationL, a setAof integers isL-free ifAdoes not contain anynon-trivial solutions toL. Meeks and Treglown [6] showed that for certain kindsof linear equations, it isNP-complete to decide if a given set of integers containsa solution-free subset of a given size. Also, for equations involving three variables,they showed that the problem of determining the size of the largest solution-freesubset isAPX-hard, and that for two such equations (representing sum-free andprogression-free sets), the problem of deciding if there is a solution-free subset withat least a specified proportion of the elements is alsoNP-complete.We answer a number of questions posed by Meeks and Treglown, by extendingthe results above to all linear equations, and showing that the problems remain hardfor sets of integers whose elements are polynomially bounded in the size of the set.For most of these results, the integers can all be positive as long as the coefficientsdo not all have the same sign.We also consider the problem of counting the number of solution-free subsets ofa given set, and show that this problem is #P-complete for any linear equation inat least three variables

    On the complexity of finding and counting solution-free sets of integers

    Get PDF
    Given a linear equation L\mathcal{L}, a set AA of integers is L\mathcal{L}-free if AA does not contain any `non-trivial' solutions to L\mathcal{L}. This notion incorporates many central topics in combinatorial number theory such as sum-free and progression-free sets. In this paper we initiate the study of (parameterised) complexity questions involving L\mathcal{L}-free sets of integers. The main questions we consider involve deciding whether a finite set of integers AA has an L\mathcal{L}-free subset of a given size, and counting all such L\mathcal{L}-free subsets. We also raise a number of open problems.Comment: 27 page

    On the Complexity of Hilbert Refutations for Partition

    Full text link
    Given a set of integers W, the Partition problem determines whether W can be divided into two disjoint subsets with equal sums. We model the Partition problem as a system of polynomial equations, and then investigate the complexity of a Hilbert's Nullstellensatz refutation, or certificate, that a given set of integers is not partitionable. We provide an explicit construction of a minimum-degree certificate, and then demonstrate that the Partition problem is equivalent to the determinant of a carefully constructed matrix called the partition matrix. In particular, we show that the determinant of the partition matrix is a polynomial that factors into an iteration over all possible partitions of W.Comment: Final versio

    More Than 1700 Years of Word Equations

    Full text link
    Geometry and Diophantine equations have been ever-present in mathematics. Diophantus of Alexandria was born in the 3rd century (as far as we know), but a systematic mathematical study of word equations began only in the 20th century. So, the title of the present article does not seem to be justified at all. However, a linear Diophantine equation can be viewed as a special case of a system of word equations over a unary alphabet, and, more importantly, a word equation can be viewed as a special case of a Diophantine equation. Hence, the problem WordEquations: "Is a given word equation solvable?" is intimately related to Hilbert's 10th problem on the solvability of Diophantine equations. This became clear to the Russian school of mathematics at the latest in the mid 1960s, after which a systematic study of that relation began. Here, we review some recent developments which led to an amazingly simple decision procedure for WordEquations, and to the description of the set of all solutions as an EDT0L language.Comment: The paper will appear as an invited address in the LNCS proceedings of CAI 2015, Stuttgart, Germany, September 1 - 4, 201

    On the complexity of nonlinear mixed-integer optimization

    Full text link
    This is a survey on the computational complexity of nonlinear mixed-integer optimization. It highlights a selection of important topics, ranging from incomputability results that arise from number theory and logic, to recently obtained fully polynomial time approximation schemes in fixed dimension, and to strongly polynomial-time algorithms for special cases.Comment: 26 pages, 5 figures; to appear in: Mixed-Integer Nonlinear Optimization, IMA Volumes, Springer-Verla

    Note on Integer Factoring Methods IV

    Get PDF
    This note continues the theoretical development of deterministic integer factorization algorithms based on systems of polynomials equations. The main result establishes a new deterministic time complexity bench mark in integer factorization.Comment: 20 Pages, New Versio

    Bounds on the Automata Size for Presburger Arithmetic

    Full text link
    Automata provide a decision procedure for Presburger arithmetic. However, until now only crude lower and upper bounds were known on the sizes of the automata produced by this approach. In this paper, we prove an upper bound on the the number of states of the minimal deterministic automaton for a Presburger arithmetic formula. This bound depends on the length of the formula and the quantifiers occurring in the formula. The upper bound is established by comparing the automata for Presburger arithmetic formulas with the formulas produced by a quantifier elimination method. We also show that our bound is tight, even for nondeterministic automata. Moreover, we provide optimal automata constructions for linear equations and inequations

    Knapsack Problems in Groups

    Full text link
    We generalize the classical knapsack and subset sum problems to arbitrary groups and study the computational complexity of these new problems. We show that these problems, as well as the bounded submonoid membership problem, are P-time decidable in hyperbolic groups and give various examples of finitely presented groups where the subset sum problem is NP-complete.Comment: 28 pages, 12 figure
    • …
    corecore