685 research outputs found

    Games and Mechanism Design in Machine Scheduling – An Introduction

    Get PDF
    In this paper, we survey different models, techniques, and some recent results to tackle machine scheduling problems within a distributed setting. In traditional optimization, a central authority is asked to solve a (computationally hard) optimization problem. In contrast, in distributed settings there are several agents, possibly equipped with private information that is not publicly known, and these agents need to interact in order to derive a solution to the problem. Usually the agents have their individual preferences, which induces them to behave strategically in order to manipulate the resulting solution. Nevertheless, one is often interested in the global performance of such systems. The analysis of such distributed settings requires techniques from classical Optimization, Game Theory, and Economic Theory. The paper therefore briefly introduces the most important of the underlying concepts, and gives a selection of typical research questions and recent results, focussing on applications to machine scheduling problems. This includes the study of the so-called price of anarchy for settings where the agents do not possess private information, as well as the design and analysis of (truthful) mechanisms in settings where the agents do possess private information.computer science applications;

    Selfish traffic allocation for server farms

    Get PDF
    We study the price of selfish routing in noncooperative networks like the Internet. In particular, we investigate the price of selfish routing using the price of anarchy (a.k.a. the coordination ratio) and other (e.g., bicriteria) measures in the recently introduced game theoretic parallel links network model of Koutsoupias and Papadimitriou. We generalize this model toward general, monotone families of cost functions and cost functions from queueing theory. A summary of our main results for general, monotone cost functions is as follows: 1. We give an exact characterization of all cost functions having a bounded/unbounded price of anarchy. For example, the price of anarchy for cost functions describing the expected delay in queueing systems is unbounded. 2. We show that an unbounded price of anarchy implies an extremely high performance degradation under bicriteria measures. In fact, the price of selfish routing can be as high as a bandwidth degradation by a factor that is linear in the network size. 3. We separate the game theoretic (integral) allocation model from the (fractional) flow model by demonstrating that even a very small or negligible amount of integrality can lead to a dramatic performance degradation. 4. We unify recent results on selfish routing under different objectives by showing that an unbounded price of anarchy under the min-max objective implies an unbounded price of anarchy under the average cost objective and vice versa. Our special focus lies on cost functions describing the behavior of Web servers that can open only a limited number of Transmission Control Protocol (TCP) connections. In particular, we compare the performance of queueing systems that serve all incoming requests with servers that reject requests in case of overload. Our analysis indicates that all queueing systems without rejection cannot give any reasonable guarantee on the expected delay of requests under selfish routing even when the injected load is far away from the capacity of the system. In contrast, Web server farms that are allowed to reject requests can guarantee a high quality of service for every individual request stream even under relatively high injection rates

    Essays on consumer search

    Get PDF

    Game theoretic models for resource sharing in wireless networks

    Get PDF
    Wireless communications have been recently characterized by rapid proliferation of wireless networks, impressive growth of standard and technologies, evolution of the end-user terminals, and increasing demand in the wireless spectrum. New, more flexible schemes for the management of the available resources, from both the user and the network side, are necessary in order to improve the efficiency in the usage of the available resources.This work aims at shedding light on the performance modeling of radio resource sharing/allocation situations. Since, in general, the quality of service perceived by a system (e.g., user, network) strictly depends on the behavior of the other entities, and the involved interactions are mainly competitive, this work introduces a framework based on non–cooperative game theoretic tools. Furthermore, non–cooperative game theory is suitable in distributed networks, where control and management are inherently decentralized.First, we consider the case in which many users have to make decisions on which wireless access point to connect to. In this scenario, the quality perceived by the users mainly depends on the number of other users choosing the very same accessing opportunity. In this context, we also consider two–stage games where network make decisions on how to use the available resources, and users react to this selecting the network that maximizes their satisfaction. Then, we refer to the problem of spectrum sharing, where users directly compete for portions of the available spectrum. Finally, we provide a more complex model where the users utility function is based on the Shannon rate. The aim of this second part is to provide a better representation of the satisfaction perceived by the users, i.e., in terms of achievable throughput. Due to the complexity of the game model, we first provide a complete analytical analysis of the two–user case. Then, we extend the model to the N–user case. We mainly analyze this game through simulations. Finally, inspired by the results obtained numerically, we introduce stochastic geometry in the analysis of spectrum games in order to predict the performance of the game in large networks.Ph.D., Electrical Engineering -- Drexel University, 201

    Peer-to-peer interactive 3D media dissemination in networked virtual environments

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore