799 research outputs found

    The strong rainbow vertex-connection of graphs

    Full text link
    A vertex-colored graph GG is said to be rainbow vertex-connected if every two vertices of GG are connected by a path whose internal vertices have distinct colors, such a path is called a rainbow path. The rainbow vertex-connection number of a connected graph GG, denoted by rvc(G)rvc(G), is the smallest number of colors that are needed in order to make GG rainbow vertex-connected. If for every pair u,vu, v of distinct vertices, GG contains a rainbow uβˆ’vu-v geodesic, then GG is strong rainbow vertex-connected. The minimum number kk for which there exists a kk-vertex-coloring of GG that results in a strongly rainbow vertex-connected graph is called the strong rainbow vertex-connection number of GG, denoted by srvc(G)srvc(G). Observe that rvc(G)≀srvc(G)rvc(G)\leq srvc(G) for any nontrivial connected graph GG. In this paper, sharp upper and lower bounds of srvc(G)srvc(G) are given for a connected graph GG of order nn, that is, 0≀srvc(G)≀nβˆ’20\leq srvc(G)\leq n-2. Graphs of order nn such that srvc(G)=1,2,nβˆ’2srvc(G)= 1, 2, n-2 are characterized, respectively. It is also shown that, for each pair a,ba, b of integers with aβ‰₯5a\geq 5 and bβ‰₯(7aβˆ’8)/5b\geq (7a-8)/5, there exists a connected graph GG such that rvc(G)=arvc(G)=a and srvc(G)=bsrvc(G)=b.Comment: 10 page

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every kβ‰₯3k \geq 3, deciding whether src(G)≀k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2βˆ’Ο΅n^{1/2-\epsilon} for any Ο΅>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure
    • …
    corecore