144 research outputs found

    Path Coupling Using Stopping Times and Counting Independent Sets and Colourings in Hypergraphs

    Full text link
    We give a new method for analysing the mixing time of a Markov chain using path coupling with stopping times. We apply this approach to two hypergraph problems. We show that the Glauber dynamics for independent sets in a hypergraph mixes rapidly as long as the maximum degree Delta of a vertex and the minimum size m of an edge satisfy m>= 2Delta+1. We also show that the Glauber dynamics for proper q-colourings of a hypergraph mixes rapidly if m>= 4 and q > Delta, and if m=3 and q>=1.65Delta. We give related results on the hardness of exact and approximate counting for both problems.Comment: Simpler proof of main theorem. Improved bound on mixing time. 19 page

    Combinatorial theorems relative to a random set

    Get PDF
    We describe recent advances in the study of random analogues of combinatorial theorems.Comment: 26 pages. Submitted to Proceedings of the ICM 201

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Recent developments in graph Ramsey theory

    Get PDF
    Given a graph H, the Ramsey number r(H) is the smallest natural number N such that any two-colouring of the edges of K_N contains a monochromatic copy of H. The existence of these numbers has been known since 1930 but their quantitative behaviour is still not well understood. Even so, there has been a great deal of recent progress on the study of Ramsey numbers and their variants, spurred on by the many advances across extremal combinatorics. In this survey, we will describe some of this progress

    Combinatorics

    Get PDF
    Combinatorics is a fundamental mathematical discipline that focuses on the study of discrete objects and their properties. The present workshop featured research in such diverse areas as Extremal, Probabilistic and Algebraic Combinatorics, Graph Theory, Discrete Geometry, Combinatorial Optimization, Theory of Computation and Statistical Mechanics. It provided current accounts of exciting developments and challenges in these fields and a stimulating venue for a variety of fruitful interactions. This is a report on the meeting, containing extended abstracts of the presentations and a summary of the problem session
    • …
    corecore