328,123 research outputs found

    Data-driven multivariate and multiscale methods for brain computer interface

    Get PDF
    This thesis focuses on the development of data-driven multivariate and multiscale methods for brain computer interface (BCI) systems. The electroencephalogram (EEG), the most convenient means to measure neurophysiological activity due to its noninvasive nature, is mainly considered. The nonlinearity and nonstationarity inherent in EEG and its multichannel recording nature require a new set of data-driven multivariate techniques to estimate more accurately features for enhanced BCI operation. Also, a long term goal is to enable an alternative EEG recording strategy for achieving long-term and portable monitoring. Empirical mode decomposition (EMD) and local mean decomposition (LMD), fully data-driven adaptive tools, are considered to decompose the nonlinear and nonstationary EEG signal into a set of components which are highly localised in time and frequency. It is shown that the complex and multivariate extensions of EMD, which can exploit common oscillatory modes within multivariate (multichannel) data, can be used to accurately estimate and compare the amplitude and phase information among multiple sources, a key for the feature extraction of BCI system. A complex extension of local mean decomposition is also introduced and its operation is illustrated on two channel neuronal spike streams. Common spatial pattern (CSP), a standard feature extraction technique for BCI application, is also extended to complex domain using the augmented complex statistics. Depending on the circularity/noncircularity of a complex signal, one of the complex CSP algorithms can be chosen to produce the best classification performance between two different EEG classes. Using these complex and multivariate algorithms, two cognitive brain studies are investigated for more natural and intuitive design of advanced BCI systems. Firstly, a Yarbus-style auditory selective attention experiment is introduced to measure the user attention to a sound source among a mixture of sound stimuli, which is aimed at improving the usefulness of hearing instruments such as hearing aid. Secondly, emotion experiments elicited by taste and taste recall are examined to determine the pleasure and displeasure of a food for the implementation of affective computing. The separation between two emotional responses is examined using real and complex-valued common spatial pattern methods. Finally, we introduce a novel approach to brain monitoring based on EEG recordings from within the ear canal, embedded on a custom made hearing aid earplug. The new platform promises the possibility of both short- and long-term continuous use for standard brain monitoring and interfacing applications

    Autonomous Navigation for an Unmanned Aerial Vehicle by the Decomposition Coordination Method

    Get PDF
    This paper introduces a new approach for solving the navigation  problem  of Unmanned Aerial  Vehicles (UAV) by studying its rotational and  translational dynamics and  then solving the nonlinear model by the Decomposition  Coordination method. The objective is to reach a destination goal by the mean of  an autonomous  computed   optimal path calculated   through optimal control sequence. Solving such complex systems often requires a great  amount of computation. However, the approach considered herein is based on  the Decomposition Coordination principle, which allows the nonlinearity to be treated at  a local level, thus offering a  low computing time. The stability of the method is discussed with sufficient conditions for convergence. A numerical application is given in consolidation  the theoretical results

    Precise algorithms to compute surface correlation functions of two-phase heterogeneous media and their applications

    Full text link
    The quantitative characterization of the microstructure of random heterogeneous media in dd-dimensional Euclidean space Rd\mathbb{R}^d via a variety of nn-point correlation functions is of great importance, since the respective infinite set determines the effective physical properties of the media. In particular, surface-surface FssF_{ss} and surface-void FsvF_{sv} correlation functions (obtainable from radiation scattering experiments) contain crucial interfacial information that enables one to estimate transport properties of the media (e.g., the mean survival time and fluid permeability) and complements the information content of the conventional two-point correlation function. However, the current technical difficulty involved in sampling surface correlation functions has been a stumbling block in their widespread use. We first present a concise derivation of the small-rr behaviors of these functions, which are linked to the \textit{mean curvature} of the system. Then we demonstrate that one can reduce the computational complexity of the problem by extracting the necessary interfacial information from a cut of the system with an infinitely long line. Accordingly, we devise algorithms based on this idea and test them for two-phase media in continuous and discrete spaces. Specifically for the exact benchmark model of overlapping spheres, we find excellent agreement between numerical and exact results. We compute surface correlation functions and corresponding local surface-area variances for a variety of other model microstructures, including hard spheres in equilibrium, decorated "stealthy" patterns, as well as snapshots of evolving pattern formation processes (e.g., spinodal decomposition). It is demonstrated that the precise determination of surface correlation functions provides a powerful means to characterize a wide class of complex multiphase microstructures

    Engineering analysis of biological variables: An example of blood pressure over 1 day

    Get PDF
    Almost all variables in biology are nonstationarily stochastic. For these variables, the conventional tools leave us a feeling that some valuable information is thrown away and that a complex phenomenon is presented imprecisely. Here, we apply recent advances initially made in the study of ocean waves to study the blood pressure waves in the lung. We note first that, in a long wave train, the handling of the local mean is of predominant importance. It is shown that a signal can be described by a sum of a series of intrinsic mode functions, each of which has zero local mean at all times. The process of deriving this series is called the “empirical mode decomposition method.” Conventionally, Fourier analysis represents the data by sine and cosine functions, but no instantaneous frequency can be defined. In the new way, the data are represented by intrinsic mode functions, to which Hilbert transform can be used. Titchmarsh [Titchmarsh, E. C. (1948) Introduction to the Theory of Fourier Integrals (Oxford Univ. Press, Oxford)] has shown that a signal and i times its Hilbert transform together define a complex variable. From that complex variable, the instantaneous frequency, instantaneous amplitude, Hilbert spectrum, and marginal Hilbert spectrum have been defined. In addition, the Gumbel extreme-value statistics are applied. We present all of these features of the blood pressure records here for the reader to see how they look. In the future, we have to learn how these features change with disease or interventions

    Kaehler submanifolds with parallel pluri-mean curvature

    Get PDF
    We investigate the local geometry of a class of K\"ahler submanifolds M⊂RnM \subset \R^n which generalize surfaces of constant mean curvature. The role of the mean curvature vector is played by the (1,1)(1,1)-part (i.e. the dzidzˉjdz_id\bar z_j-components) of the second fundamental form α\alpha, which we call the pluri-mean curvature. We show that these K\"ahler submanifolds are characterized by the existence of an associated family of isometric submanifolds with rotated second fundamental form. Of particular interest is the isotropic case where this associated family is trivial. We also investigate the properties of the corresponding Gauss map which is pluriharmonic.Comment: Plain TeX, 21 page
    • …
    corecore