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Abstract

We investigate the local geometry of a class of Kähler submanifoldsM ⊂ Rn which generalize surfaces o
constant mean curvature. The role of the mean curvature vector is played by the(1,1)-part (i.e., thedzi dz̄j -
components) of the second fundamental formα, which we call the pluri-mean curvature. We show that th
Kähler submanifolds are characterized by the existence of an associated family of isometric submanifo
rotated second fundamental form. Of particular interest is the isotropic case where this associated family
We also investigate the properties of the corresponding Gauss map which is pluriharmonic.
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1. Introduction

Some surfaces in 3-space admit isometric deformations which change the shape of the surfa
preserving the intrinsic metric. Even the principal curvatures may be preserved while the pr
curvature directions are rotated under the deformation; this happens precisely if the surface has
mean curvature (“cmc”). The best known example is the deformation of the catenoid into the h
which transforms the meridians and the equator of the catenoid into the helicoid’s ruling lines an
thus rotating the principal curvature directions by 45◦.

In the present paper we wish to investigate submanifolds of higher dimension and codim
allowing similar deformations. The surface will be replaced by a simply connectedm-dimensional
complex manifoldM with an immersionf :M→R

n such that the induced metric onM is Kählerian, i.e.,
the almost complex structureJ on TM is orthogonal and parallel; we call theseKähler immersionsfor
short. Letα denote the second fundamental form off and rotate it by puttingαϑ(x, y)= α(Rϑx,Rϑy),
where

Rϑ = cos(ϑ)I + sin(ϑ)J.

When does there exist a family of isometric immersionsfϑ :M → R
n with second fundamental form

αϑ? We will see in Theorem 1 that this happens precisely if the bilinear form

α(1,1)(x, y) := 1

2

(
α(x, y)+ α(Jx, Jy)

)
is parallel with respect to the connections on the tangent and normal bundles. In the case of a
(m = 1) we haveα(1,1)(x, y) = 〈x, y〉 · η, henceα(1,1) is parallel if and only if the mean curvatu
vectorη = 1

2 traceα is parallel also. This motivates us to callα(1,1) the pluri-mean curvatureof f ; in
fact, for any complex curveC ⊂M the restriction ofα(1,1) to T C is again the metric multiplied by th
mean curvature vector of the surfacef |C . But while surfaces with nonzero constant mean curvature
only have essential codimension 1 or 2 (cf. [13]), there are interesting substantial examples in
dimensions and codimensions (cf. Section 7). Whenα(1,1) = 0, the immersion is called(1,1)-geodesic
or pluriminimal; this case was studied earlier (cf. [5,6] and their references).

The main part of the paper is devoted to studying the relationship between a Kähler imm
f :M→ R

n with parallel pluri-mean curvature (“ppmc”) and its Gauss mapτ :M→Gr whereτ(p)=
dfp(TpM) and Gr is the Grassmannian of 2m-dimensional subspaces ofR

n. Just as in the case o
cmc surfaces (cf. [11]), ppmc submanifolds are characterized by the pluriharmonicity of their
maps (Theorem 2). Pluriharmonic maps also admit an associated family of deformations, and in
deformed Gauss map is the Gauss map of the deformed immersion (Theorem 3).

The Gauss mapτ of a Kähler immersion has a refinementτ ′ called thecomplex Gauss mapwhich takes
account of the complex structure: for anyp ∈M we putτ ′(p)= df (T ′pM). (Here we have extendeddfp
complex linearly toT cM = TM ⊗ C and used theJ -eigenspace decompositionT cM = T ′M + T ′′M
with J = i onT ′M andJ =−i onT ′′M .) The mapτ ′ takes values in the setZ1 of isotropiccomplexm-
dimensional subspacesE ⊂ C

n, i.e., the complex conjugate�E is perpendicular toE with respect to the
Hermitian inner product, or equivalently〈E,E〉 = 0 for the symmetric inner product〈x, y〉 =∑

xjyj
on C

n. This spaceZ1 can be viewed as a flag manifold fibering overGr, and thenτ ′ is a horizontal
lift of τ . We will show thatτ ′ is pluriharmonic if and only ifτ is also and hence if and only iff is
ppmc (Theorem 5). In fact we can characterize the complex Gauss maps of ppmc immersions am
pluriharmonic maps intoZ1 (Theorem 6).
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Alternatively, Z1 can also be viewed as a complex submanifold of the complex GrassmanniGc
of m-planes inC

n. We also study the compositionj ◦ τ ′ for the inclusionj :Z1 → Gc. This map is
pluriharmonic only for special ppmc immersions which we callhalf isotropic(Theorem 7). These conta
two interesting subclasses, characterized also by properties ofτ ′: thepluri-minimal ones with zero pluri-
mean curvature (τ ′ is holomorphic, Theorem 4) and theisotropic ones where the associated family
trivial (τ andj ◦τ ′ are isotropic, Theorems 9 and 10). The first of these results is well known for sur
a surface is minimal if and only if its (complex) Gauss map is holomorphic. The second result
interesting for surfaces in 3-space: Isotropy would mean that each tangent vector is a principal cu
direction, hence the surface must be a round sphere or a plane. But there are interesting exa
higher dimension, among them the standard embeddings of Hermitian symmetric spaces (see Se
We need some facts on flag manifolds which are known in principle [2] but not explicitly worked ou
shall prove these statements in Appendix A.

2. Associated families of immersions

LetM be a Kähler manifold of complex dimensionm; this is a 2m-dimensional Riemannian manifo
with a parallel and orthogonal almost complex structureJ onTM . Since our theory is entirely local, w
do not need completeness ofM , however at some points we will need simple connectivity. We consid
isometric immersionf :M→ R

n (a Kähler immersion). Let α :TM ⊗ TM→ N be the correspondin
second fundamental form defined byα(X,Y ) = (∂X∂Yf )

N whereN = Nf = df (TM)⊥ denotes the
normal bundle off . Consider the parallel rotationsRϑ = cos(ϑ)I + sin(ϑ)J for any ϑ ∈ R and let
αϑ :TM ⊗ TM→N ,

αϑ(x, y)= α(Rϑx,Rϑy).

An associated familyfor f is roughly speaking a one-parameter family of isometric immers
fϑ :M→ R

n with second fundamental formαϑ .4 This is not quite correct since the second fundame
forms of the two immersionsf andfϑ take values in different spaces, the normal bundles off and
fϑ . More precisely, a one-parameter familyfϑ :M → R

n of isometric immersions will be called a
associated familyof f if their second fundamental formsαfϑ satisfy

(1)ψϑ

(
αfϑ (x, y)

)= αϑ(x, y)= α(Rϑx,Rϑy)

for some parallel bundle isomorphismψϑ :Nfϑ →Nf . Our first theorem below will show under whic
conditions such immersions exist.

We need some more notation. The complexified tangent bundleT cM = TM⊗C of a Kähler manifold
M splits asT cM = T ′ ⊕ T ′′ where the components are the parallel eigenbundles of the almost co
structureJ with J = i on T ′ andJ =−i on T ′′. Vectors inT ′ are also called(1,0)-vectors and thos
in T ′′ = T ′ are(0,1)-vectors. Letπ ′(x)= 1

2(x − iJ x) andπ ′′(x)= 1
2(x + iJ x) be the projections ont

these subbundles. Extendingα complex linearly to the complexified tangent and normal bundles, we

(2)α(1,1)(x, y)= α(π ′x,π ′′y)+ α(π ′′x,π ′y)= 1

2

(
α(x, y)+ α(Jx, Jy)

)
.

4 This was calledweak associated familyin [6].
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As explained in the introduction,α(1,1) will be called thepluri-mean curvature, and f is called an
immersion withparallel pluri-mean curvature(ppmc) if this tensor is parallel with respect to the tange
and normal connections. The following theorem which was partially obtained in [7] shows the re
to associated families.

Theorem 1. Let f :M→ R
n be a Kähler immersion. Thenf has an associated family if and only if

has parallel pluri-mean curvature.

Proof. We are using the existence theorem for submanifolds (cf. [12]): LetM be ap-dimensional
Riemannian manifold andN a k-dimensional euclidean vector bundle overM with a metric connection
DN . Further letα ∈ Hom(S2TM,N) whereS2TM denotes the symmetric tensor product ofTM . Then
there is an isometric immersionf :M → R

p+k with normal bundleN (up to a parallel vector bundl
isometry) and second fundamental formα if and only if the submanifold equations of Gauss, Coda
and Ricci are satisfied.

Let us apply this toαϑ . TheGauss equationis

(Gϑ )
〈
R(x, y)v,w

〉= 〈
αϑ(x,w),αϑ(y, v)

〉− 〈
αϑ(x, v), αϑ(y,w)

〉
.

In fact, this equation follows from(G0), the Gauss equation off . The easiest way to see this is to u
the splittingT cM = T ′ + T ′′. On T ′ we haveRϑ = eiϑ while Rϑ = e−iϑ on T ′′. We may assume tha
x, y, v,w ∈ T ′ ∪ T ′′. In all possible cases, the right hand side of (Gϑ ) picks up a common factor eikϑ for
somek. The left hand side is zero as soonx, y or v,w have the same type (both inT ′ or both inT ′′).
This holds on any Kähler manifold sinceR(x, y)T ′ ⊂ T ′ and〈T ′, T ′〉 = 0, thus〈R(x, y)T ′, T ′〉 = 0 for
all x, y ∈ T c (where we have extended the inner product complex linearly toT cM). For these cases (Gϑ )
follows from (G0). In the remaining cases, two of the vectorsx, y, v,w are inT ′ and the other two in
T ′′, and thus (Gϑ ) is the same as(G0).

Next we consider theCodazzi equation:

(Cϑ )(Dxαϑ)(y, z)= (Dyαϑ)(x, z).

This follows from(C0) (the Codazzi equation off ) provided thatx, y have the same type. But ifx ∈ T ′
and y ∈ T ′′, we get different factors in front of the two sides of (Cϑ ). Thus (Cϑ ) follows from (C0)

precisely if(DT ′α)(T
′′, T c) vanishes, but by(C0), this is the same as(DT cα)(T

′, T ′′). Thus (Cϑ ) holds
if and only if α(1,1) is parallel.

It remains to consider theRicci equation. For anyξ ∈ N let Aϑ
ξ be the symmetric endomorphism

TM defined by

〈Aϑ
ξ x, y〉 =

〈
αϑ(x, y), ξ

〉= 〈
α(Rϑx,Rϑy), ξ

〉= 〈AξRϑx,Rϑy〉,
henceAϑ

ξ =R−1
ϑ AξRϑ . Then the Ricci equation is

(Rϑ )
〈
RN(x, y)ξ, η

〉= 〈[Aϑ
ξ ,A

ϑ
η ]x, y

〉= 〈[Aξ,Aη]Rϑx,Rϑy
〉
.

Again this equation follows from(R0), the Ricci equation forf , provided thatx, y ∈ T ′ ∪ T ′′ are of
different type. But if, say, bothx, y are inT ′, the right hand side is multiplied by e2iϑ . Hence (Rϑ ) follows
from (R0) if and only ifRN(T ′, T ′)= 0. (Note that the casex, y ∈ T ′′ follows by complex conjugation.
But the subsequent lemma shows that this is not a new condition; it follows also fromDα(1,1) = 0. This
finishes the proof of Theorem 1.✷
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Lemma 1. If a Kähler immersionf :M→R
n has parallel pluri-mean curvature, thenRN(T ′, T ′)= 0.

Proof. Let No ⊂ N denote the image ofα(1,1); since α(1,1) is parallel,No is a parallel subbundl
of N . Let (No)⊥ ⊂ N be its orthogonal complement. For anyξ ∈ (No)⊥ and x ∈ T ′, ȳ ∈ T ′′ we
have〈Aξx, ȳ〉 = 〈α(x, ȳ), ξ 〉 ∈ 〈No, (No)⊥〉 = 0. SinceT ′ andT ′′ are isotropic subspaces, this impli
Aξ (T

′)⊂ T ′′, and by complex conjugation we also getAξ(T
′′)⊂ T ′.

We have to show that〈RN(x, y)ξ, η〉 = 〈[Aξ ,Aη]x, y〉 vanishes for allx, y ∈ T ′ andξ, η ∈ N . It is
sufficient to consider the following two cases:

(a) ξ, η ∈ (No)⊥,
(b) ξ ∈No andη ∈N arbitrary.

In case (a), bothAξ andAη interchangeT ′ andT ′′. Hence the commutator[Aξ ,Aη] preservesT ′ which
by isotropy ofT ′ implies 〈[Aξ ,Aη]T ′, T ′〉 = 0. Case (b) will follow from the following more gener
fact which is well known and easy to prove by twofold covariant differentiation:

Sublemma. LetE,F be vector bundles with connectionsDE andDF over some smooth manifoldM .
Let β :E → F be a parallel homomorphism, i.e.,β(DE

Xe) = DF
Xβ(e) for any sectione of E. Then

RF (x, y)βe = β(RE(x, y)e).

We apply the sublemma toβ := α(1,1) :T ′ ⊗ T ′′ → No. According to case (b), we may assum
ξ = α(u, v̄) for someu ∈ T ′ andv̄ ∈ T ′′. SinceNo ⊂N is parallel, we have

RN(x, y)ξ =RNo

(x, y)β(u⊗ v̄)= β
(
RT ′⊗T ′′(x, y)(u⊗ v̄)

)= 0,

recalling thatRT ′⊗T ′′(x, y)(u⊗ v̄)= (R(x, y)u)⊗ v̄+u⊗R(x, y)v̄, andR(x, y)= 0 for x, y ∈ T ′ since
M is a Kähler manifold. ✷

3. The Gauss map

LetM be ap-dimensional smooth manifold,f :M→R
n an immersion andGr the Grassmannian o

p-dimensional linear subspacesE ⊂R
n. TheGauss mapτ :M→Gr assigns to eachp ∈M the subspace

τ(p) = dfp(TpM) ⊂ R
n. We viewGr as a submanifold of the vector spaceS(n) of all symmetric real

n×n-matrices; this done by replacing a linear subspaceE with the orthogonal projection ontoE (which
will be calledE, too). Then the tangent spaceTEGr is the subspaceS(E,E⊥)⊂ S(n) of all self adjoint
linear maps onRn sendingE to E⊥ and vice versa; it can be naturally identified with Hom(E,E⊥).
A smooth mapφ :M → Gr can be viewed as a vector bundleφ overM whose fibre atp ∈M is the
subspaceφ(p) ⊂ R

n (in other words,φ = φ∗γ whereγ is the tautological bundle overGr with total
spaceγ = {(E, v) ∈ Gr × R

n; v ∈ E}). In fact φ andφ⊥ are subbundles of the trivial bundleM × R
n

and thus they inherit a natural connection which is differentiation onR
n followed by projection onto the

fibre. We may viewφ∗TGr = Hom(φ,φ⊥), and the pull back connection onφ∗TGr is just the natura
connection on Hom(φ,φ⊥). Later on we will suppress the difference betweenφ andφ in our notation.

The differentialdφ :TM → φ∗TGr is computed as follows: If we differentiateφ with respect to a
vector fieldX on M , the action of∂Xφ on a sections of φ (which is a mappings :M → R

n with
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s(p) ∈ φ(p) for all p ∈M) is given by

(3)(∂Xφ) · s = ∂X(φ · s)− φ · ∂Xs = φ⊥ · ∂Xs
whereφ andφ⊥ are considered as a projection matrices onR

n, depending onp ∈M . In order to apply
this to the Gauss mapφ = τ , we use the sections = df (Y )= ∂Yf whereY is an arbitrary vector field on
M , and we obtain

(4)(∂Xτ) · df (Y )= τ⊥(∂X∂Yf )= α(X,Y ).

The following theorem due to [7] generalizes the well known result of Ruh and Vilms [11] w
characterizes cmc surfaces by the harmonicity of their Gauss maps. In higher dimension, harm
has to be replaced by pluriharmonicity: A smooth mapφ :M → S into a symmetric spaceS is called
pluriharmonic if its Levi form Ddφ(1,1) (the restriction of the Hessian toT ′ ⊗ T ′′) vanishes.5 As
always we viewdφ as a section of the bundle Hom(TM,f ∗T S) with its natural connection induce
by the Levi-Civita connections onM andS. In particular,dτ is a section of Hom(TM,Hom(τ, τ⊥))=
Hom(TM ⊗ τ,N). Sincef :M → R

n is an isometric immersion,df :TM → τ is a parallel bundle
isomorphism which will be used to identify the bundlesTM andτ . Using this identification and (4) w
havedτ = α ∈Hom(TM ⊗ TM,N) andDdτ =Dα.

Theorem 2. LetM be a Kähler manifold andf :M→R
n an isometric immersion. Thenf has parallel

pluri-mean curvature if and only if its Gauss mapτ is pluriharmonic.

Proof. Ddτ(1,1) = 0 if and only if for anyX ∈ T ′, �Y ∈ T ′′ andW ∈ T c we have 0= (DXdτ)(�Y ) ·
df (W) = (DXα)(�Y ,W) = (DWα)(X,�Y), using Codazzi equation. SinceT ′ and T ′′ are parallel
subbundles ofT cM , this is equivalent toD(α(1,1))= 0. ✷

The pluriharmonic mapτ :M→ Gr has also an associated family: For any Kähler manifoldM and
any symmetric spaceS, a family of smooth mapsτϑ :M→ S is calledassociatedto τ = τ0 if there is a
parallel bundle isomorphismφϑ : τ ∗ϑT S→ τ ∗T S preserving the curvature tensorRS such that

(5)φϑ ◦ dτϑ = dτ ◦Rϑ .

It is known (cf. [6]) that a given smooth mapτ :M → S has a (unique) associated family if and on
if it is pluriharmonic. We shall show next that the associated families of a ppmc immersionf and its
pluriharmonic Gauss mapτ correspond to each other.

Theorem 3. Letf :M→R
n be a ppmc immersion with Gauss mapτ and letfϑ be the associated famil

of f . Letτϑ be the Gauss map offϑ . Then(τϑ ) is the associated family ofτ .

Proof. It suffices to show that the Gauss mapsτϑ of the immersionsfϑ form an associated family. Thu
we have to find a parallel bundle mapφϑ :TτϑGr→ TτGr satisfying (5) above. Letx, y ∈ TpM . On the

5 For some authors (for example, [9]), maps with this property are said to be(1,1)-geodesicwhile a pluriharmonic map
is one whose restriction to any holomorphic curve is harmonic. In the current setting, whereM is Kähler, these competin
definitions are equivalent.
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dτ(Rϑx) :df (y) �→ α(Rϑx, y),

on the other hand

dτϑ(x) :dfϑ(R−ϑy) �→ αϑ(x,R−ϑy)=ψϑ

(
α(Rϑx, y)

)
.

Thus Eq. (5) is satisfied if for anya ∈ Tτϑ (p)Gr=Hom(τϑ (p),Nϑ(p)) we put

φϑ(a)=ψϑ ◦ a ◦R−ϑ ∈Hom
(
τ(p),N(p)

)= Tτ(p)Gr

where we have identified bothτ andτϑ with TM usingdf anddfϑ and whereψϑ denotes the paralle
isomorphism between the normal bundles (cf. (1) in Section 2). We see thatφϑ(p) acts by conjugatinga
with the orthogonaln× n-matrixB mapping the subspacesτϑ(p) andNϑ(p) ontoτ(p) andN(p), with

B|τϑ (p) = dfp ◦Rϑ ◦ (dfϑ)−1
p , B|Nϑ(p) =ψϑ(p).

Conjugation byB ∈ O(n) is a global isometry onGr and thus preserves the curvature tensor ofGr.
Moreover,φϑ is parallel since so areψϑ andRϑ as well asdf :TM→ τ anddfϑ :TM→ τϑ . Thusτϑ
is the associated family ofτ . ✷

4. The complex Gauss map

The Gauss mapτ of a Kähler manifold immersionf :M→R
n records only the tangent planes witho

taking account of the complex structure. Therefore we introduce a refinement, thecomplex Gauss ma
τ ′. It takes values in the setZ1 of all m-dimensional linear subspacesE ⊂ C

n which areisotropic, i.e.,
the bilinear inner product〈x, y〉 =∑

j xj yj on C
n vanishes onE ×E. In fact we letτ ′ :M→ Z1,

τ ′(p)= df (T ′p)=
{
df (x)− i · df (Jx); x ∈ TpM

}⊂C
n.

The manifoldZ1 can be viewed in two different ways. On the one hand, it is a complex submanifo
the complex GrassmannianGc=Gm(C

n) of all complexm-planes inC
n. In fact, the complex structur

on Gc is induced by the complex Lie groupGL(n,C) acting transitively onGc, andZ1⊂Gc is an orbit
of the complex subgroupO(n,C) inducing a complex structure onZ1. On the other handZ1 can be
considered also as a flag manifold fibering over thereal GrassmannianGr (cf. Appendix A): To any
E ∈Z1 we may assign the orthogonal6 decomposition (“flag”)Cn =E +N + �E whereN = (E + �E)⊥,
and the projectionπ :Z1 → Gr is given byπ(E) = E + �E (we view the subspaces ofR

n as complex
subspaces ofCn which are invariant under complex conjugation). In terms of coset spaces we
Z1=On/(Um×Ok) wherek = n−2m, andπ :Z1→Gr=On/(O2m×Ok) is the canonical projection
This is a Riemannian submersion (up to a scaling factor) for anyOn-invariant metric onZ1 since the
horizontal space (the reductive complement ofso2m ⊕ sok in the Lie algebrason) is irreducible with

6 The terms “orthogonal” or “perpendicular” in a complex vector space are always related to theHermitian inner product
(x, y) = 〈x, y〉.
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respect to the isotropy groupUm × Ok of Z1. As a further consequence, the notions “horizontal” a
“super-horizontal” agree forZ1 (cf. Appendix A).7

If we take the second view point consideringZ1 as a flag manifold overGr, we have to replaceτ ′ by

τ1= (τ ′,N, τ ′′)

whereτ ′′ = τ ′ andN = (τ ′ + τ ′′)⊥; this is the complexified normal bundle of the immersionf . Clearly,
π ◦ τ1= τ .

Lemma 2. Letf :M→R
n be a Kähler immersion with second fundamental formα and complex Gaus

mapτ ′ :M→ Z1⊂Gc. Then we have for anyv ∈ TM andx′ ∈ T ′ (whencedf (x′) ∈ τ ′)
(6)dτ ′(v).df (x′)= α(v, x′).

Consequentlyτ1= (τ ′,N, τ ′′) is a (super-)horizontal lift of the real Gauss mapτ .

Proof. We first viewZ1 ⊂ Gc. We may identifyTM with τ andT ′ with τ ′ usingdf . Since(T ′)⊥ =
T ′′ +N , we have (as for the real Grassmannian)dτ ′(v).x′ = (∂vX

′)(T ′)⊥ = (∂vX
′)T ′′ + (∂vX′)N whereX′

is a(1,0) vector field extendingx′. But (∂vX′)T
′′ = (DvX

′)T ′′ = 0 becauseT ′ is parallel with respect to
the Levi-Civita connectionD of M . Moreover(∂vX′)N = α(v, x′) which shows (6).

Now considerZ1 as a flag manifold overGr. Then Eq. (6) shows thatdτ1(v)= (dτ ′(v), dN(v), dτ ′′(v))
is a super-horizontal vector since it mapsτ ′ into the next following spaceN ; in other words,dτ1(v).τ

′
has no component inτ ′′ (cf. Eq. (A.5) in Appendix A). ✷
Remark. The proof shows that the horizontality ofτ1 is just another expression for the parallelity of t
almost complex structureJ onM .

The first occasion where the complex Gauss map turned out to be useful was the characteriz
pluriminimal submanifolds by holomorphicity ofτ ′ (cf. [10]). A similar statement forτ would not even
make sense.

Theorem 4. An Kähler immersionf :M→ R
n is pluriminimal (i.e., has zero pluri-mean curvature) if

and only ifτ1 :M→ Z1 is holomorphic.

Proof. The mapτ1 = (τ ′,N, τ ′′) is holomorphic if and only ifdτ1 mapsT ′ = T ′M into T ′Z or, more
precisely (using Lemma 2), intoH′

1. In other words (cf. Appendix A),dτ1(v
′) for v′ ∈ T ′ is a linear map

sendingτ ′ into N (which is always true by Lemma 2) andN into τ ′′. The latter property says that fo
anyw′′ ∈ T ′′ andξ ∈N

0=−〈
dτ1(v

′).ξ,w′′
〉= 〈

ξ, dτ1(v
′).w′′

〉= 〈
ξ,α(v′,w′′)

〉
which means thatα(1,1) = 0. ✷

7 A flag manifold over a (real or complex) Grassmannian is a set of certain orthogonal decompositionsCn =E1+ · · · +Er .
A vectorv in the tangent spaceTEZ at anyE = (E1, . . . ,Er ) ∈ Z is a linear map sending eachEi into its complement, andv
is calledsuper-horizontalif it mapsEi only into its nearest neighborsEi−1+Ei+1. See Appendix A or [2] for a formulation
of super-horizontality which is valid for any generalised flag manifold.
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Theorem 5. A Kähler immersionf :M→ R
n is ppmc if and only ifτ1 :M→ Z1 is a (super)horizontal

pluriharmonic map.

Proof. By Lemma 2 the complex Gauss mapτ1 of any Kähler immersionf takes values in the
(super)horizontal bundleH1. Moreoverf is ppmc if and only if its real Gauss mapτ is pluriharmonic
(cf. Theorem 2). Butτ1 is a horizontal lift ofτ with respect to the Riemannian submersionπ :Z1→Gr.
This implies that pluriharmonicity forτ and τ1 are equivalent. In fact,τ is pluriharmonic if and only
if for any two commuting vector fieldsV ′ ∈ T ′ andW ′′ ∈ T ′′ we haveDW ′′dτ(V ′) = 0. Sincedτ1(V

′)
is the horizontal lift ofdτ(V ′), this is equivalent toDW ′′dτ1(V

′) = 0, see the subsequent Lemma 3
details. ✷
Lemma 3. LetZ,S be Riemannian manifolds andπ :Z→ S a Riemannian submersion. LetM be any
manifold andτ1 :M → Z be a horizontal map, i.e.,dτ1(TM) ⊂ H whereH ⊂ T Z is the horizontal
subbundle. Consider the O’Neill tensorA :H ⊗H→ V (whereV =H⊥ ⊂ T Z is the vertical bundle)
given by

A(X,Y )= [X,Y ]V = 2(DXY )
V

for horizontal vector fieldsX,Y . Thenτ ∗1A= 0, i.e., (DWdτ1(V ))
V = 0 for any two vector fieldsV,W

onM .

Proof. Let V,W be local vector fields onM with [V,W ] = 0. Locally we can writedτ1(V ) =∑
i vi(Xi ◦ τ1) anddτ1(W) =∑

j wj (Xj ◦ τ1) wherevi,wj are functions onM andX1, . . . ,Xn form
a basis of horizontal vector fields onZ. Then

A
(
dτ1(V ), dτ1(W)

)=∑
ij

viwjA(Xi,Xj) ◦ τ1=
∑
ij

viwj (DXi
Xj −DXj

Xi)
V ◦ τ1

∗= (
DV dτ1(W)−DWdτ1(V )

)V = 0,

due to the symmetry of the hessianDdτ1; at ∗ we have used the identityDV (Xj ◦ τ1) =Ddτ1(V )Xj =∑
i vi(DXi

Xj ) ◦ τ1 which is a defining property of the induced connection on vector fields alongτ1 and
which implies

∑
ij viwj (DXi

Xj ) ◦ τ1=DV dτ1(W). ✷
Now we can characterize all ppmc immersions with values in the unit sphereSn−1 ⊂ R

n by their
complex Gauss map. In principle we are able to decide whether or not a given horizontal pluriha
mapτ1 :M→Z1 is the complex Gauss map of a ppmc Kähler immersion:

Theorem 6. LetM be a Kähler manifold. A horizontal pluriharmonic mapτ1= (τ ′,N, τ ′′) :M→ Z1 is
the complex Gauss map of a ppmc Kähler immersionf :M→ Sn−1⊂R

n if and only if there exists a rea
sectionf ofN (a smooth mapf :M→R

n with f (p) ∈Np for all p ∈M) such thatdf (T ′)= τ ′.

Proof. Clearly, if f :M → Sn−1 is a Kähler immersion, the position vectorf is always normal and
hence a section of the normal bundleN with df (T ′)= τ ′. Further, iff is ppmc thenτ1= (τ ′,N, τ ′′) is
horizontal pluriharmonic by the previous theorem. Conversely, suppose that such a mapτ1= (τ ′,N, τ ′′)
and a real sectionf of N with df (T ′) = τ ′ are given. Since the values ofdf are perpendicular toN ,
hence tof , we have〈f,f 〉 = const �= 0, and we may assume thatf takes values inSn−1. In order to
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show that it is a ppmc immersion, by Theorem 2 we have to prove only that the metric induced bf on
M is Kähler for the given complex structure. In general this is true (cf. [5]) if and only if

(a) df (T ′) is isotropic and
(b) ddf (1,1) takes values in the normal bundle off .

(a) is true sincedf (T ′) = τ ′ is isotropic by definition ofZ1, and (b) holds sinceτ ′ differentiates into
N by horizontality ofτ1. More precisely, letV ′ andW ′′ be commuting(1,0) and (0,1) vector fields.
Then s := ∂V ′f is a section ofτ ′, and hence(∂W ′′s)(τ

′)⊥ = (∂W ′′τ).s ∈ N (cf. (3) in Section 3). Hence
∂W ′′∂V ′f ∈ τ ′ +N . Similar we obtain∂V ′∂W ′′f ∈ τ ′′ +N . Since the two expressions agree, they mus
contained in the intersection of the two bundles which isN . ✷

Returning to the first view pointZ1 ⊂Gc we may ask if alsoτ ′ :M→ Gc is pluriharmonic whenf
is ppmc. In [7] it was shown that an extra condition is needed: LetNo ⊂ N be the parallel subbundl
spanned by the values ofα(1,1) andN1 its orthogonal complement inN . The ppmc immersionf is called
half isotropicif α(T ′, T ′)⊂N1. The reason for this notation will become clear in the next section.

Theorem 7. LetM be a Kähler manifold andf :M→ R
n an isometric immersion with complex Gau

mapτ ′ :M→Gc. Thenτ ′ is pluriharmonic if and only iff is a half isotropic ppmc immersion.

Proof. Recall from (6) thatdτ ′ = α|T c⊗T ′ ∈Hom(T c ⊗ T ′, T ′′ +N). We compute(Ddτ ′)(1,1). LetX,Z
be(1,0)-vector fields and�Y a (0,1)-vector field. Then

(7)(DXdτ
′)(�Y).Z = π ′′∂X

(
α(�Y ,Z))+ (

DN
Xα

)
(�Y ,Z)

whereπ ′′ is the projection ontoτ ′′ ⊂ C
n (which we identify withT ′′) andDN

Xα denotes the norma
derivative ofα. Henceτ ′ is pluriharmonic if and only if both terms at right hand side vanish. The
term is zero if and only if 0= 〈∂X(α(�Y ,Z)),W 〉 = −〈α(�Y ,Z),α(X,W)〉 for all W ∈ T ′ which means
thatα(T ′, T ′) ∈N1= (No)⊥. The vanishing of the second term is precisely the ppmc condition.✷
Remark 1. It might seem more natural to use the embeddingj : Z1 ⊂ Gc in order to prove the
above theorem; clearly,τ ′ = j ◦ τ1 :M → Gc is pluriharmonic if and only ifτ1 is pluriharmonic and
(τ ∗1β)

(1,1) = 0 whereβ denotes the second fundamental form ofZ1⊂Gc. In fact, (τ ∗1β)(X,�Y) is given
by the first summand at the right hand side of (7). Proving this involves computing the normal spa
the second fundamental form of the submanifoldZ1⊂Gc.

Remark 2. Half isotropic ppmc immersions are studied in [7]. Such an immersion is always minim
a sphereSn−1

r if it is substantial and indecomposable as a submanifold. In fact, the mean curvature
η = 1

2m traceα = 1
2m traceα(1,1) ∈No is umbilic which can be seen as follows. First of all,η is a parallel

normal vector field sinceα(1,1) is parallel. Further, the symmetric bilinear formαη(x, y) = 〈α(x, y), η〉
is parallel onT ′ ⊗ T ′′ and vanishes onT ′ ⊗ T ′ and onT ′′ ⊗ T ′′ sinceα maps these bundles intoN1

which is perpendicular toη. Thus the corresponding Weingarten mapAη is parallel. IfAη had two
different eigenvalues, the corresponding eigenspace distributions would give an extrinsic splitting
immersion. HenceAη = κ · I for some constantκ > 0. Thereforem = f + 1

κ
η is a constant point in
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n, andf (M) is contained in the sphere of radius1

κ
centered atm. Since the mean curvature vectorη is

normal to this sphere, the immersion is minimal.

5. Isotropy

We have seen that a ppmc immersionf :M→ R
n has an associated family of isometric immersio

fϑ with rotated second fundamental forms (cf. Eq. (1)). It may happen that this family is trivial
fϑ = f for all ϑ (up to Euclidean motions) which implies some symmetry for the second fundam
form α. In fact we see from (1) thatfϑ = f for all ϑ if and only if there is a family of parallel vecto
bundle automorphismsψϑ :N→N with

(8)ψϑ ◦ α = αϑ

whereαϑ(x, y) = α(Rϑx,Rϑy) as before. We will call such an immersionisotropic. By the following
theorem (cf. [6]), this property can be read off from thecomponents ofα:

α(2,0)(x, y)= α(π ′x,π ′y),
α(1,1)(x, y)= α(π ′x,π ′′y)+ α(π ′′x,π ′y),
α(0,2)(x, y)= α(π ′′x,π ′′y).

Theorem 8. An isometric Kähler immersionf :M → R
n is isotropic ppmc if and only if there is

parallel orthogonal decomposition of the complexified normal bundleNc =N ′ ⊕No⊕N ′′ such that the
parallel subbundlesN ′, No andN ′′ contain the values ofα(2,0), α(1,1) andα(0,2), respectively.

Proof. If f is isotropic ppmc, then the components ofα take values in the eigenbundles ofψϑ

corresponding to the eigenvalues e2iϑ , 1 and e−2iϑ . They will be calledN ′, No andN ′′. Sinceψϑ is
parallel, they form a parallel orthogonal decomposition ofNc. Vice versa, if such a decomposition
Nc is given, we can define a parallel bundle automorphismψϑ :N → N by puttingψϑ = I onNo and
ψϑ = e±2iϑ I onN ′ andN ′′, and we obtain Eq. (8) which is equivalent tof being isotropic ppmc. ✷
Remark. Theorem 8 implies, in particular, that isotropic ppmc immersions are half isotropic
Section 4) sinceα(2,0) takes values inN ′ which is perpendicular toNo. Hence, by Remark 2 in Section
we may assume that an isotropic ppmc immersion takes values in a sphereSn−1 ⊂ R

n. Thus Theorem 6
applies and in principle, we can obtain these immersions from their Gauss maps.

By Theorem 3, isotropy of a ppmc immersionf :M → R
n implies the isotropy of its Gauss ma

τ :M → Gr. The converse statement however cannot be true: Iff :M → R
n is pluriminimal, i.e., a

pluriharmonic isometric immersion, its associated familyfϑ satisfies

dfϑ = df ◦Rϑ

up to a rigid motion ofRn (cf. [6]), hence we also concludeτϑ = τ (another argument for the isotropy
τ will be given below). But we will see in the next theorem that these are essentially the only two
where the Gauss map is isotropic.

We need some preparations. For any complex vector bundleE ⊂M ×C
n, let us define a linear ma

d :T c→ Hom(E,E⊥) (thedifferential or shape operatorof E) by assigning to each vectorv ∈ T c and
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any sections of E theE⊥-component of∂vs. According to the splittingT c = T ′ + T ′′, the differential
splits asd = d ′ + d ′′.

Lemma 4. For any isotropic ppmc immersionf :M→R
n we get the following chain of differentials:

d ′ :N ′′ → τ ′′ →No→ τ ′ →N ′ → 0,

d ′′ :N ′ → τ ′ →No→ τ ′′ →N ′′ → 0.

Proof. SinceN ′,No,N ′′ are parallel subbundles ofNc, being eigenbundles of the parallel bund
automorphismψϑ :N → N , the differential of any of them takes values inτ c. Similarly, τ ′ andτ ′′ are
mapped intoNc, being parallel subbundles ofτ c. Henced ′τ ′′ = α(T ′, T ′′)=No. Further,〈d ′N ′′, τ ′′〉 =
〈N ′′, d ′τ ′′〉 = 〈N ′′,No〉 = 0 and consequentlyd ′N ′′ ⊂ τ ′′ since τ ′′ ⊂ τ c is maximal isotropic. Next
〈d ′No, τ ′〉 = 〈No, d ′τ ′〉 = 〈No,N ′〉 = 0, thus d ′No ⊂ τ ′. Further, d ′τ ′ = N ′. Finally, 〈d ′N ′, τ ′〉 =
〈N ′,N ′〉 = 0 sinceN ′ is isotropic (being perpendicular toN ′′ = N ′), and 〈d ′N ′, τ ′′〉 = 〈N ′,No〉 = 0,
thus we getd ′N ′ = 0. This proves the first chain of differentials. The second one follows by com
conjugation. ✷
Lemma 5. Let M = M1 × M2 be a Riemannian product of Kähler manifolds andf :M → R

n an
isometric immersion. Letx1 ∈ TM1 andx2 ∈ TM2. Then|α(1,1)(x1, x2)| = |α(2,0)(x1, x2)|. In particular
α(x1, x2)= 0 if and only ifα(2,0)(x1, x2)= 0. If this holds for all suchx1, x2, the splitting is extrinsic, i.e.
we have an orthogonal decompositionR

n = R
n1 ⊕R

n2 such thatf = f1⊕ f2 for isometric immersions
fi :Mi →R

ni .

Proof. Since all mixed curvature tensor components of the Riemannian productM are zero, we obtain
from the Gauss equation that, for anyy1 ∈ T cM1 andy2 ∈ T cM2,

0= 〈
R(y1, ȳ1)y2, ȳ2

〉= 〈
α(y1, ȳ2), α(ȳ1, y2)

〉− 〈
α(y1, y2), α(ȳ1, ȳ2)

〉= ∣∣α(y1, ȳ2)
∣∣2− ∣∣α(y1, y2)

∣∣2
.

Thus|α(y1, y2)| = |α(y1, ȳ2)| and in particular, puttingy1= π ′x1 andy2= π ′x2, we get∣∣α(π ′x1, π
′x2)

∣∣= ∣∣α(π ′x1, π
′′x2)

∣∣.
The extrinsic splitting is obvious ifα(TM1, TM2)= 0. ✷
Lemma 6. LetH ⊂ O(2m) be a group acting onV = R

2m and letJ,J̃ ∈ O(2m) be twoH -invariant
complex structures onV . Then there is anH -invariant decompositionV =∑

j Vj such that on eachVj
we have eitherJ̃ =±J or there is anH -invariant quaternionic structure onVj .

Proof. Using the complex structureJ , we considerR2m as a complex vector space, and we decomp
J̃ into its complex linear and antilinear components (calledL andA). HenceJ̃ = L + A with L =
1
2(J̃ − J J̃ J ) andA= 1

2(J̃ + J J̃ J ). FromJ̃ 2=−I we get

−I = L2+A2+LA+AL,

and sinceL2+A2 is linear whileLA+AL is antilinear, this impliesL2+A2=−I andLA+AL= 0.
Since bothL andA are antisymmetric,L2 andA2 =−L2− I are symmetric and decomposeV = R

2m

into common eigenspacesW1, . . . ,Wr with non-positive real eigenvalues. LetW =Wj be any of these



F.E. Burstall et al. / Differential Geometry and its Applications 20 (2004) 47–66 59

allel
ing

on a

t

er-

ion
n

-

ft

le
eigenspaces and−c2,−s2 with c2+s2= 1 the corresponding eigenvalues ofL2 andA2. If s = 0, we have
A= 0 andJ̃ J = J J̃ onW . Thus there is anH -invariant splittingW =W+ +W− with J̃ = J onW+ and
J̃ =−J onW−. If s �= 0, we may putJ2= 1

s
A and obtain(J2)

2= 1
s2A

2=−I . This is an antisymmetric
complex structure, hence orthogonal (since(J2)

T = −J2 and (J2)
2 = −I imply (J2)

T J2 = I ), andJ2

anti-commutes withJ . ThusJ1 := J together withJ2 andJ3 := J1J2 form anH -invariant quaternionic
structure onW . ✷
Corollary. Let M be a locally irreducible Riemannian manifold with two linear independent par
almost complex structures. ThenM is locally hyper-Kähler, i.e., locally there exist three anti-commut
parallel almost complex structures onM .

Proof. We apply Lemma 6 forV = TpM whereH is the local holonomy group ofM at the pointp.
By assumption this acts irreducibly, so theH -invariant decompositionV =∑

Vj must be trivial. Since
the two almost complex structures are linearly independent, we get a quaternionic structure(J1, J2, J3)

on TpM which is invariant under the local holonomy group and thus allows a parallel extension
neighborhood ofp. ✷
Theorem 9. Let M be a Kähler manifold such that no local factor ofM is hyper-Kähler, and le
f :M→R

n be an isometric immersion with Gauss mapτ :M→Gr. Thenτ is isotropic pluriharmonic
if and only iff is either pluriminimal or isotropic ppmc.

Proof. The mapτ :M → Gr is isotropic pluriharmonic if and only if there is a holomorphic sup
horizontal lift τ̂ :M → Z into some flag manifoldZ fibering overGr (cf. [6]). We classify these flag
manifolds in the appendix and obtainZ = Zr for somer ∈ N, whereZr is the set of all(2r + 1)-
tuples of complex subspacesE−r , . . . ,Er with given dimensions forming an orthogonal decomposit
C
n =∑r

j=−r Ej such thatE−j = Ej for all j . Thus the liftτ̂ is a “moving” orthogonal decompositio

(E−r , . . . ,Er) of subbundlesEj ⊂M × C
n with E−j = Ej , and the fact that̂τ is holomorphic super

horizontal means thatd ′Ej = Ej+1. Sinceτ̂ is a lift of τ , we have eitherτ c = Eeven or τ c =Eodd where
Eeven=∑

j+r evenEj andEodd=∑
j+r oddEj .

Now f :M → R
n is pluriminimal if and only if τ ′ is holomorphic which meansd ′′τ ′ = 0.

Consequentlyd ′′N ⊂ τ ′ (since〈d ′′N,τ ′〉 = 〈N,d ′′τ ′〉 = 0) andd ′′τ ′′ ⊂ N (sinceτ ′′ ⊂ τ c is parallel),
hence

d ′′ : τ ′′ →N→ τ ′ → 0, d ′ : τ ′ →N→ τ ′′ → 0.

Thus τ̂ = (τ ′,N, τ ′′) is a (super-)horizontal holomorphic lift into the corresponding flag manifoldZ1

(and in particular,τ is isotropic pluriharmonic).
If f :M→ R

n is isotropic ppmc, then̂τ = (N ′′, τ ′′,No, τ ′,N ′) is a super-horizontal holomorphic li
into the corresponding flag manifoldZ2 (cf. Lemma 4).

Conversely, letf :M → R
n be any Kähler immersion such that the Gauss mapτ :M → Gr is

isotropic pluriharmonic and let̂τ = (E−r , . . . ,Er) be the holomorphic super-horizontal lift ofτ . Then
τ c = E−r ′ + E−r ′+2 + · · · + Er ′ wherer ′ ∈ {r − 1, r}, and sinced ′Ej ⊂ Ej+1 and d ′′Ej ⊂ Ej−1, the
subbundlesEj of τ c are parallel. Letτ cj =Ej +E−j . Thenτ cj = τj ⊗C for some parallel real subbund
τj ⊂ τ , andE±j = (I ∓ iJj )τj for a parallel complex structureJj on τj , if j �= 0. By the corollary of
Lemma 6 and the present assumption we may assumeJj =±J whereJ is the complex structure ofTM ,



60 F.E. Burstall et al. / Differential Geometry and its Applications 20 (2004) 47–66

us

is

st
se

gs of

last

isotropy

ap

ition
le

oup

tion
duct
transplanted bydf ontoτ . (Maybe we yet have to splitτj into holonomy irreducible subbundles.) Th
Ej = π ′(τj ) orEj = π ′′(τj ). If Ei = τ ′i andEj = τ ′j for somei �= ±j , using the symmetry ofα we have

α(Ei,Ej )= d(Ei).Ej ⊂Ej−1 ∩Ei−1= 0

and likewise, ifEi = τ ′i andEj = τ ′′j , we have

α(Ei,E−j )= d(Ei).E−j ⊂E−j−1 ∩Ei−1= 0.

In both cases we getα(2,0)(τi, τj )= 0 which by Lemma 5 is equivalent toα(τi, τj )= 0 (recall that the
parallel subbundlesτj define a local Riemannian product structure onM). So we see that the splitting
also extrinsic and we may assumer ′ = 1.

The remaining possibilities for our moving flag are the following four cases:(τ ′,N, τ ′′), (τ ′′,N, τ ′),
(N ′′, τ ′,No, τ ′′,N ′), and(N ′′, τ ′′,No, τ ′,N ′) (the bundlesN ′ andN ′′ are interchangeable). In the fir
case we haved ′′τ ′ = 0, soτ ′ is holomorphic and hencef is pluriminimal by Theorem 4. The second ca
is equivalent tod ′τ ′ = 0 which meansα(2,0) = 0. This implies(Dα)(2,1) = 0 and henceDα = 0 by the
Codazzi equation, and in particularf is a ppmc immersion. In fact these are the standard embeddin
compact Hermitian symmetric spaces (cf. Section 7). In the third case we getd ′τ ′′ ⊂N ′ andd ′′τ ′ ⊂N ′′.
Henceα(T ′, T ′′) ∈ N ′ ∩N ′′ = 0 and thusα(1,1) = 0. So we are back to the first case. Finally in the
case,α(2,0), α(1,1) andα(0,2) take values in the parallel subbundlesN ′, No andN ′′ which shows isotropy
by Theorem 8. ✷

6. Isotropy and complex Gauss map

Using the complex Gauss map with values in the complex Grassmannian, we can characterize
avoiding the unpleasant extra condition of Theorem 9:

Theorem 10. A Kähler immersionf :M→ R
n is isotropic ppmc if and only if its complex Gauss m

τ ′ :M→Gc is isotropic pluriharmonic, but not holomorphic.

Proof. Assume first thatf :M → R
n is isotropic ppmc. Then we have an orthogonal decompos

(“moving flag”) C
n =N ′ ⊕ τ ′ ⊕Q with Q :=No+ τ ′′ +N ′′ (whereC

n denotes the trivial vector bund
M ×C

n), and by Lemma 4 we have the differentialsd ′ :Q→ τ ′ →N ′ → 0 andd ′′ :N ′ → τ ′ →Q→ 0.
Thus the map(Q, τ ′,N ′) into the corresponding flag manifold overGcwith the projection(Q, τ ′,N ′) �→
τ ′ is horizontal and holomorphic and thusτ ′ is isotropic pluriharmonic.

Conversely, let us assume thatτ ′ is isotropic pluriharmonic, i.e., there is a one parameter gr
φϑ ∈ Aut(τ ′∗(TGc)) with φϑ ◦ dτ ′ = dτ ′ ◦Rϑ . By [6] we have a horizontal holomorphic lift̂τ ′ of τ ′
into some flag manifoldZ over Gc, i.e. (cf. Appendix A) there are decompositionsτ ′ = τ ′1 ⊕ · · · ⊕ τ ′r
and (τ ′)⊥ = P1 ⊕ · · · ⊕ Pr+1 (whereP1 andPr+1 might be zero) such thatd ′ :Pi → τi → Pi+1 and
d ′′ :Pi+1→ τi → Pi for i = 1, . . . , r . By the following argument we may assumer = 1 and thusτ̂ ′ is a
“moving decomposition” of the type

C
n = P1⊕ τ ′ ⊕ P2.

In fact, the parallel decompositionτ ′ = τ ′1⊕· · ·⊕ τ ′r induces a corresponding real parallel decomposi
TM = T1⊕ · · · ⊕ Tr and hence the manifoldM can be (locally) decomposed as a Riemannian pro
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of Kähler manifolds. This splitting is even extrinsic: For anyx′i ∈ T ′i andx′j ∈ T ′j we have (usingdf to
identify T ′ andτ ′)

α(x′i , x
′
j )= dτ ′(x′i ).x

′
j ⊂ d ′τj ⊂ Pj+1,

α(x′j , x
′
i)= dτ ′(x′j ).x

′
i ⊂ d ′τi ⊂ Pi+1,

henceα(x′i , x
′
j )= 0 and thusα(2,0)(Ti, Tj ) = 0. But by Lemma 5 this impliesα(Ti, Tj ) = 0. Hence we

may assumer = 1.
Now we claim for any(1,0) vector fieldsX,Y,Z (while still identifying TM with τ )

(9)(D�Zdτ
′)(�X).Y = (

DN
�Z α

)
(�X,Y )+ (

∂�Z
(
α(�X,Y )))T ′′ .

In fact, recall from (6) (Lemma 2) that

dτ ′ :TM→ τ ′∗(TGc)=Hom(τ ′, τ ′⊥), dτ ′(V ).Y = (∂V Y )
T ′′+N = α(V,Y )

for anyV ∈ T c andY ∈ T ′. Then

(10)(D�Zdτ
′)(�X).Y = (

∂�Z
(
dτ ′(�X).Y ))T ′′+N − dτ ′(D�ZX).Y − dτ ′(X).D�ZY.

Now we may replacedτ ′ by α. Consider the right hand side of (10) (“rhs (10)”). The first term splits
its components with respect toT ′′ andN . Its N -component together with the 2nd and 3rd terms g
(DN

�Z α)(�X,Y ) (which is the first term of rhs (9)) while the remaining term∂�Z(α(�X,Y )T ′′ is the second
summand of rhs (9). Thus Eq. (9) is proved.

On the other hand we have

(11)(D�Zdτ
′)(�X)=D�Z

(
dτ ′(�X))− dτ ′(D�Z�X).

If τ ′ is isotropic pluriharmonic, then both terms at rhs (11) are eigenvectors ofφθ with respect to the
eigenvalue e−iθ : the second one becauseD�Z�X ∈ T ′′ andφθ ◦ dτ ′ = dτ ′ ◦Rθ , and the first one becaus
the eigenbundle ofφθ is parallel. Thus these vectors lift to(0,1) super-horizontal tangent vectors ofZ
(cf. [6]) which mapP2→ T ′ → P1.

It follows that (D�Zdτ ′)(�X) mapsT ′ into P1, and since the first term of rhs (9) vanishes by the pp
property, we conclude from (9) that

(
∂�Zα(�X,Y )

)T ′′ ∈ P1.

Thus puttingT ′′0 = T ′′ ∩ P1 and lettingT ′′1 be the orthogonal complement ofT ′′0 in T ′′, we have
(∂�Zα(�X,Y ))T ′′1 = 0, and therefore we obtain for allW ∈ T ′ with �W ∈ T ′′1 :

〈
α(�X,Y ),α(�Z,W)

〉= 〈
∂�Zα(�X,Y ),W

〉= 0.

In other words,α(�Z,W)= 0 for allZ ∈ T ′ which says thatW and hence all ofT ′′1 lies in the subbundle

kerα(1,1) := {
W ∈ T ′; α(�Z,W)= 0 ∀Z ∈ T ′}.

By parallelity ofα(1,1), this is a parallel subbundle ofT ′ which can be split off, using Lemma 5 (yieldin
a pluriminimal factor). Thus we may assume that kerα(1,1) = 0 and henceT ′′1 = 0, i.e.,T ′′ ⊂ P1.

Just as in (11) we have that(DZdτ
′).X is in the eiθ -eigenspace ofφϑ whose elements mapT ′ into P2,

and as in (9) we have

(12)(DZdτ
′)X).Y = (

DN
Z α

)
(X,Y )+ (

∂Z(α(X,Y )
)T ′′ ∈ P2.
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But the second term of rhs (12) is inT ′′ ⊂ P1 while the first one is inN ⊥ T ′′. Hence the sum can b
perpendicular toT ′′ (recall thatP2 ⊥ P1 ⊃ T ′′) only if its T ′′-component (the second term of rhs (1
vanishes. Taking the inner product of this term with anyW ∈ T ′ we obtain

〈
α(X,Y ),α(Z,W)

〉= 0

for arbitraryX,Y,Z,W ∈ T ′. Thus〈N ′,N ′〉 = 0 or in other wordsN ′ ⊥ N ′ = N ′′. Sincef is already
half isotropic (cf. Theorem 7), we also haveN ′ ⊥No. Now the proof is finished by Theorem 8.✷

7. Examples

Clearly, iffi :Mi→R
ni are any two ppmc Kähler immersions (i = 1,2), then so isf = f1×f2 :M1×

M2→R
n1+n2. Therefore it is enough to study ppmc immersionsf :M→R

n which areirreducible, i.e.,
they do not split as above, andsubstantial, i.e., their image is not contained in any proper affine subsp
of R

n. Three classes of such immersions are known:

(1) surfaces with nonzero parallel mean curvature vector,
(2) pluriminimal submanifolds,
(3) extrinsic symmetric Kähler immersions.

Class (1) has been investigated by Yau [13]; these examples occur only inR
3 or S3 unless they are

minimal surfaces inSn−1. Class (2) contains many examples in all dimensions, cf. [3] and the r
paper [1]. We will now briefly describe class (3).

Recall that an isometric (irreducible, substantial) immersionf :M→R
n is calledextrinsic symmetric

if the full second fundamental formα ∈ Hom(TM ⊗ TM,N) is parallel. These immersions have be
classified by Ferus ([8], also cf. [4]). It is not difficult to see thatα is parallel if and only iff is
invariant under reflection at each of its normal spaces. In particular all point reflections or ge
symmetries onM extend to (extrinsic) isometries, henceM is globally symmetric. Moreover,M is
isotropy irreducible, i.e., the full extrinsic isotropy group ofM acts irreducibly on the tangent spa
(cf. [4]). The corresponding Gauss mapτ :M → Gr is a totally geodesic isometric immersion of t
symmetric spaceM into the real GrassmannianGr. In fact, sinceτ is equivariant andM is isotropy
irreducible, it is isometric (up to a scaling factor). Moreover, the image ofτ is invariant under the
corresponding point reflections ofGr and thus totally geodesic; note that the point reflection of
Grassmannian at someτ(p) ∈Gr is just the reflection at the normal spaceτ(p)⊥ =Np.

Hence, iff :M→R
n is an extrinsic symmetric immersion which is also Kähler (with almost com

structureJ ), thenf is clearly ppmc since the parallelity ofα(1,1) is a weaker condition. Moreover, iff
is also substantial and irreducible, it is isotropic. To see this recall that a symmetric spaceM with a
Kähler metric is in factHermitian symmetric, i.e., the rotationsRϑ (p) = cos(ϑ)I + sin(ϑ)J on TpM
for any p ∈ M extend to isometriesρϑ on M fixing p. But these isometries are generated by p
reflections which extend to orthogonal linear maps onR

n, henceρϑ also extends to someAϑ ∈ O(n)
with f ◦ ρϑ =Aϑ ◦ f . We putψϑ(p)=A2ϑ |Np

. SinceAϑ (being an extrinsic isometry) commutes w
α, we obtain

(13)ψϑ

(
α(v,w)

)= α(Rϑv,Rϑw)
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for all v,w ∈ TpM . In particular this equation implies thatp �→ ψϑ(p) is parallel (as an endomorphis
of the normal bundleN ), since so areRϑ andα and sinceN = α(TM⊗TM). Thusf is isotropic ppmc.

Sinceψπ = I by (13), the eigenvalues ofψπ/2 can only be±1. Accordingly, class (3) has tw
subclasses: If 1 is the only eigenvalue, i.e.,ψπ/2= I , then we get from (13)

α(Jv, Jw)= α(v,w)

for all v,w, henceα(2,0) = 0. These immersions have been characterized already by Ferus [8]: Th
the so calledstandard embeddingsof an Hermitian symmetric spaceM =G/K into the Lie algebrag of
G via the mapp �→ Jp (recall that the complex structureJp on TpM is a skew-symmetric derivation o
the curvature tensor ofM atp, hence it extends to an infinitesimal isometry, i.e., to an element ofg).

In the remaining examples, the eigenvalue−1 occurs forψπ/2. Inspection shows that these a
precisely the extrinsic symmetric 2: 1 immersions ofGr+2 = G+2 (R

N), the Grassmannian oforiented
2-planes inR

N , factorizing over the ordinary real GrassmannianGr2. In fact, Gr+2 is an Hermitian
symmetric space (which can be identified with the complex quadric{[z] ∈ CPN−1; 〈z, z〉 = 0} via the
mapE = Span{x, y} �→ [x + iy], where(x, y) is any oriented orthonormal basis of the oriented pl
E ⊂ R

N ). We putf = f̃ ◦ π whereπ : Gr+2 →Gr2 is the canonical projection and̃f : Gr2→ S(N) the
usual (extrinsic symmetric) embedding of the Grassmannian into the space of symmetric realN × N -
matrices by assigning to each planeE ∈ Gr2 the orthogonal projection ofRN ontoE. In this case, the
(−1)-eigenspace is 2-dimensional. The easiest example is the Veronese immersion

S2→RP 2→ S4⊂R
5∼= {

X ∈ S(3); traceX= 1
}
.

It is an open problem how to construct further classes of examples. Using our Theorem 6, w
that a better understanding of horizontal pluriharmonic maps intoZ1 will lead to new ppmc immersions

Acknowledgements

Part of the work was done during visits of the second and the last named authors at ICTP,
and at the Mathematisches Forschungsinstitut Oberwolfach. They wish to express their thanks
institutions for hospitality and to Volkswagenstiftung and DLR-CNPq for financial support.

Appendix A. Canonical embeddings of flag manifolds

LetG be a compact Lie group with Lie algebrag, and letgc = g⊗C be the complexification ofg. We
consider adjoint orbits (“flag manifolds”)Z = Ad(G)ξ for ξ ∈ g. An orbit can always be represented a
coset spaceG/H whereH is the stabilizer subgroup; in the present caseH =C(ξ)= {g ∈G; Ad(g)ξ =
ξ } is the centralizer ofξ . More precisely,Z is the image of the equivariant embeddingjξ :G/H → g,
jξ (gH) = Ad(g)ξ . Of course, if we fixH , manyξ ∈ g may haveH as centralizer and give differen
embeddingsjξ of the same coset spaceG/H , but there are distinguished suchξ : We call ξ ∈ g a
canonical elementandjξ acanonical embeddingof G/H for H = C(ξ) if

C1 The eigenvalues of1
i
ad(ξ) are integers (wherei =√−1 ),
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C2 g1+ g−1 generatesgc, wheregk ⊂ gc denotes thek-eigenspace of1
i
ad(ξ).8

The Jacobi identity implies[gj ,gk] ⊂ gj+k . Sinceg1+ g−1 is a generating subspace andg−j = gj , the
eigenvalues of1

i
ad(ξ) form a set{−r, . . . , r} for some positive integerr (called theheight of the flag

manifold) whereg0 = hc is the complexified Lie algebra ofH , and we have a direct decompositi
gc =∑r

j=−r gj .
The flag manifoldZ = G/H fibres over a symmetric spaceS =G/K defined by the correspondin

(complexified) Cartan decomposition as follows:

(A.1)kc =
∑
j even

gj , pc =
∑
j odd

gj .

In fact, the Cartan relations[k, k] ⊂ k, [k,p] ⊂ p, [p,p] ⊂ k are obvious from[gj ,gk] ⊂ gj+k , and clearly
hc = g0 ⊂ kc. ThusZ defines a unique symmetric spaceS which is inner, i.e., its symmetry is an inne
automorphism (namelyAd(eπξ )). But conversely there areseveralflag manifolds which fibre overS as
described. As an example we shall determine all canonical elements and corresponding flag m
over complex and real Grassmannians, using only elementary linear algebra.

First letG= Un the unitary group. Theng= un is the space of skew-Hermitian matrices. Anyξ ∈ g

determines an orthogonal eigenspace decomposition ofC
n, and the eigenvalues are imaginary. Th

there is an orthogonal decompositionCn = ∑m
j=1Ej such thatξ = i · ∑m

j=1λjEj for real numbers
λ1 < λ2 < · · ·< λm, where for any subspaceE ⊂C

n we use the same symbolE to denotes the orthogon
projection matrix ontoE. If E,F ⊂ C

n are subspaces withE ⊥ F , we embed Hom(E,F ) into
End(Cn)= gc by puttingL|E⊥ = 0 for anyL ∈ Hom(E,F ). Then we have for anyLEF ∈Hom(E,F ):

(A.2)[E,LEF ] = −LEF , [F,LEF ] = LEF .

Thus for allLjk ∈Hjk :=Hom(Ej ,Ek) we obtain

(A.3)ad(ξ)Ljk = i · (λk − λj ) ·Ljk.

Hence, ifξ is canonical, thenλk−λj are integers for allj, k, by property C1. Next we claimλj+1−λj = 1
for all j . This is due to property C2 saying thatg1+ g−1 generatesgc. In fact, if λk+1− λk � 2 for some
k, we may decomposeCn = E ⊕ F with E =∑k

j=1Ej andF =∑m
l=k+1El . Thenλl − λj � 2 for all

j ∈ {1, . . . , k} andl ∈ {k + 1, . . . ,m}, and henceHjl = Hom(Ej ,El) andHlj = Hom(El,Ej ) belong to
somegk with |k| � 2. In other words,g1 + g−1 is contained in Hom(E,E) ⊕ Hom(F,F ) which is a
proper Lie subalgebra ofucn. This contradicts property C2. Thus we have seen (the converse statem
obvious):

Proposition A.1. An elementξ ∈ g= un is canonical if and only ifξ = i(λ0 · I +∑m
j=1 j ·Ej) for some

orthogonal decompositionCn =∑m
j=1Ej and anyλ0 ∈R. Thengk =∑

j Hj,j+k .

8 A canonical elementξ is not uniquely determined byH . But there is only one suchξ (up to adding an element in th
center ofg) in any Weyl chamberC of g which is adjacent to the subtorusT ′ centralized byH (where “adjacent” mean
that �C ∩ t′ contains an open subset oft′ = L(T ′)). In fact ξ = ∑

j∈J α∗j , where {α1, . . . , αl} are the simple roots ofg

corresponding toC andα∗1, . . . , α∗l the dual root vectors (i.e.,αj (α
∗
k ) = δjk ) and whereJ = {j ∈ {1, . . . , l}; gαj ∩ h = 0}

(cf. [2, p. 42]). Using this extra structure we can representG/H as the complex coset spaceGc/P for the parabolic subgrou
P = {g ∈Gc; Ad(g)ξ ∈ ξ +∑

k>0 gk}, and our definition of “canonical element” agrees with that of [2, p. 41].
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The corresponding flag manifold is a “classical” flag manifoldZ consisting of all orthogona
decompositions ofCn with the same dimensions asE1, . . . ,Er , andZ is embedded as the adjoi
orbit Ad(Un)ξ . What is the corresponding symmetric spaceS over whichZ fibres? Let us putEodd=∑

j oddEj andEev=∑
j evenEj . Then we have

(A.4)kc = End(Eev)⊕End(Eodd), pc =Hom(Eev,Eodd)⊕Hom(Eodd,Eev).

This is the complexified Cartan decomposition of a symmetric space, namely the Grassmannia
subspaces inCn with the same dimension asEev (or asEodd).

Now letG= SOn be the orthogonal group which we consider as a subgroup ofUn. Let ξ ∈ son ⊂ un.
As before, we haveξ = i ·∑m

j=1λjEj for some orthogonal decompositionC
n =∑

j Ej whereλ1 < · · ·<
λm are real. But nowξ is a real matrix, i.e., we also haveξ = ξ̄ =−i ·∑j λjEj . Since the projection

Ej are linearly independent and nonnegative, there is a permutationσ of {1, . . . ,m} such thatEj =Eσj

andλσj =−λj . Thus

Ĥjk :=Hom(Ej ,Ek)+Hom(Eσk,Eσj )

is the eigenspace ofad(ξ) corresponding to the eigenvalueλk − λj , according to (A.3). Nowsocn = {A ∈
C
n×n; AT =−A} is generated as a vector space byMjk :=Ljk − (Ljk)

T for all Ljk ∈Hom(Ej ,Ek) and
all j, k ∈ {1, . . . ,m}. We claim thatMjk ∈ Ĥjk.

In fact, it is sufficient to show that(Ljk)
T ∈ Hom(Eσk,Eσj ). Put y = (Ljk)

T x for somex ∈ C
n.

Let us denote the symmetric inner product onC
n by 〈v,w〉 =∑

vjwj . Then for allw ∈ C
n we have

〈y,w〉 = 〈x,Ljkw〉, and the latter is nonzero only ifw ∈ Ej andx ∈ Ek . Moreover〈y,w〉 �= 0 implies
y ∈Ej . Thus(Ljk)

T mapsEk =Eσk intoEj =Eσj and vanishes on the orthogonal complement ofEσk ;
this proves the claim.

Hencead(ξ) takes the same eigenvaluesλj − λk on socn as onucn. Thus by C1, these difference
are integers and by C2 we even haveλj+1 − λj = 1 as before; otherwisesocn had to be contained i
a subalgebra Hom(E,E)+ Hom(F,F ) ⊂ ucn for some nontrivial decompositionCn = E ⊕ F , but the
inclusionSOn ⊂ Un is an irreducible representation. Thus we conclude that the set of eigenvaluesλj of
1
i
ξ is of the form{−r,−r + 1, . . . , r − 1, r} for some positive integer or half integerr . RelabellingEj

we obtain:

Proposition A.2. An elementξ ∈ g = son is canonical if and only ifξ = ∑r
j=−r j · Ej for some

orthogonal decompositionCn =∑r
j=−r Ej such thatE−j =Ej for all j ∈ {−r, . . . , r}, for somer ∈ 1

2N.

Thengk =∑
j H̃j,j+k whereH̃j,l = {A ∈ Ĥj,l; AT =−A}.

The corresponding symmetric spaceS is a subset of the complex Grassmannian obtained fromEev,
namelyS = {A(Eev); A ∈ SOn}, whereEev :=∑

j+r evenEj . We have to distinguish two cases:

(a) r ∈ N: Then the eigenvalues of1
i
ad(ξ) are the integersj ∈ {−r, . . . , r}. If j + r is even, then so i

−j + r . HenceEev is invariant under conjugation and thus the complexification of a subspace oR
n.

HenceS is the real Grassmannian containing all subspaces ofR
n with the same dimension asEev.

(b) r /∈ N: Then all eigenvaluesj ∈ {−r, . . . , r} are proper half integers. Ifj + r is even,−j + r is odd,
and henceEev=∑

j+r oddEj = (Eev)
⊥. Thus the dimensionn is even andEev is a maximal isotropic
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subspace. ThereforeS is the space of all maximal isotropic subspaces ofC
n, or as a coset spac

S = SOn/Un/2.

Corollary. The flag manifolds over real Grassmannians are precisely the manifolds of all ortho
decompositionsCn =∑r

j=−r Ej for somer ∈N, whereE−j =Ej and the dimensions ofE0, . . . ,Er are
fixed arbitrarily.

The complexified tangent space of a general canonically embedded flag manifoldZ = Ad(G)ξ at the
point ξ is T c = ad(gc)ξ = ad(ξ)(

∑
j gj ) =∑

j �=0 gj . Moreover,Z is also a complex manifold (a cos
space of the complex groupGc), and the space of(1,0) tangent vectors isT ′ =∑

j>0 gj . Further, the
complexified horizontal subspace for the fibrationπ :Z→ S is H =∑

k oddgk while the (1,0) super-
horizontal space is justH′

1= g1⊂H.
In particular, for a flag manifoldZ over a real Grassmannian we obtain using the previous notati

(A.5)T c =
∑
j �=k

H̃jk, T ′ =
∑
j<k

H̃jk, H′
1=

∑
j

H̃j,j+1.
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