2,709 research outputs found

    UTCI-Fiala multi-node model of human heat transfer and temperature regulation.

    Get PDF
    The UTCI-Fiala mathematical model of human temperature regulation forms the basis of the new Universal Thermal Climate Index (UTC). Following extensive validation tests, adaptations and extensions, such as the inclusion of an adaptive clothing model, the model was used to predict human temperature and regulatory responses for combinations of the prevailing outdoor climate conditions. This paper provides an overview of the underlying algorithms and methods that constitute the multi-node dynamic UTCI-Fiala model of human thermal physiology and comfort. Treated topics include modelling heat and mass transfer within the body, numerical techniques, modelling environmental heat exchanges, thermoregulatory reactions of the central nervous system, and perceptual responses. Other contributions of this special issue describe the validation of the UTCI-Fiala model against measured data and the development of the adaptive clothing model for outdoor climates

    Investigating properties of the cardiovascular system using innovative analysis algorithms based on ensemble empirical mode decomposition

    Get PDF
    This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited - Copyright @ 2012 Jia-Rong Yeh et al.Cardiovascular system is known to be nonlinear and nonstationary. Traditional linear assessments algorithms of arterial stiffness and systemic resistance of cardiac system accompany the problem of nonstationary or inconvenience in practical applications. In this pilot study, two new assessment methods were developed: the first is ensemble empirical mode decomposition based reflection index (EEMD-RI) while the second is based on the phase shift between ECG and BP on cardiac oscillation. Both methods utilise the EEMD algorithm which is suitable for nonlinear and nonstationary systems. These methods were used to investigate the properties of arterial stiffness and systemic resistance for a pig's cardiovascular system via ECG and blood pressure (BP). This experiment simulated a sequence of continuous changes of blood pressure arising from steady condition to high blood pressure by clamping the artery and an inverse by relaxing the artery. As a hypothesis, the arterial stiffness and systemic resistance should vary with the blood pressure due to clamping and relaxing the artery. The results show statistically significant correlations between BP, EEMD-based RI, and the phase shift between ECG and BP on cardiac oscillation. The two assessments results demonstrate the merits of the EEMD for signal analysis.This work is supported by the National Science Council (NSC) of Taiwan (Grant number NSC 99-2221-E-155-046-MY3), Centre for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan which is sponsored by National Science Council (Grant number: NSC 100–2911-I-008-001) and the Chung-Shan Institute of Science & Technology in Taiwan (Grant numbers: CSIST-095-V101 and CSIST-095-V102)

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 197, September 1979

    Get PDF
    This bibliography lists 193 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1979

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 171

    Get PDF
    This bibliography lists 186 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1977

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 299)

    Get PDF
    This bibliography lists 96 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1987

    Advanced intelligent control and optimization for cardiac pacemaker systems

    Get PDF
    Since cardiovascular diseases are major causes of morbidity and mortality in the developed countries and the number one cause of death in the United States, their accurate diagnosis and effective treatment via advanced cardiac pacemaker systems have become very important. Intelligent control and optimization of the pacemakers are significant research subjects. Serious but infrequently occurring arrhythmias are difficult to diagnose. The use of electrocardiogram (ECG) waveform only cannot exactly distinguish between deadly abnormalities and temporary arrhythmias. Thus, this work develops a new method based on frequency entrainment to analyze pole-zero characteristics of the phase error between abnormal ECG and entrained Yanagihara, Noma, and Irisawa (YNI)-response. The thresholds of poles and zeros to diagnose deadly bradycardia and tachycardia are derived, respectively, for the first time. For bradycardia under different states, a fuzzy proportional-integral-derivative (FPID) controller for dual- sensor cardiac pacemaker systems is designed. It can automatically control the heart rate to accurately track a desired preset profile. Through comparing with the conventional algorithm, FPID provides a more suitable control strategy for offering better adaptation of the heart rate, in order to fulfill the patient\u27s physiological needs. This novel control method improves the robustness and performance of a pacemaker system significantly. Higher delivered energy for stimulation may cause higher energy consumption in pacemakers and accelerated battery depletion. Hence, this work designs an optimal single-pulse stimulus to treat sudden cardiac arrest, while minimizing the pulse amplitude and releasing stimulus pain. Moreover, it derives the minimum pulse amplitude for successful entrainment. The simulation results confirm that the optimal single-pulse is effective to induce rapid response of sudden cardiac arrest for heartbeat recovery, while a significant reduction in the delivered energy is achieved. The study will be helpful for not only better diagnosis and treatment of cardiovascular diseases but also improving the performance of pacemaker systems

    The role of tumour vasculature in fluid flow and drug transport in solid tumours

    Get PDF
    The aberrance of the vasculature in tumours has been linked to increased aggressiveness and poor drug delivery in tumours. Complexities in the microarchitecture of tumour vasculature occurring on microscopic scales can affect fluid flow and drug transport making it difficult to predict tumour response to treatment. Given this, mathematical models can play an important role in understanding the various aspects of the tumour vasculature that can promote invasiveness and limit drug delivery. In this work, computational models are developed to investigate the effect of tumour vasculature on fluid flow and drug distribution and novel imaging methods are assessed for their ability to characterise the tumour vasculature in whole human tumours. A mathematical angiogenesis model is used to generate microscopic details including individual vessel properties on a whole vascular network scale which are coupled with a fluid flow and drug transport model. The interstitial fluid pressure (IFP) in the tumour model was found to be elevated with increased heterogeneity caused by the presence of a necrotic core and heterogenous vessel permeability. Subtle changes to the network on a microscopic scale significantly influenced fluid flow in the tumour vessels and tissue. Delivery of doxorubicin to tumours was found to be highly dependent on the properties of tumour vasculature and blood flow, where regions with excessive branching and vessel tortuosity had reduced drug concentrations due to poor blood flow. Hence, the vascular density was not found to be the main factor in the accumulation of the drug within the tissue space and it’s uptake by cancer cells. An interplay between treatment strategy including dose and administration mode and properties of the vasculature was found by evaluating the spatial intracellular concentration. The fluid flow and drug transport models showed the significant effect of incorporating the microscopic properties of the tumour vasculature which can influence fluid flow and drug distribution on a macroscopic scale. The imaging methods assessed in this work shows that Optical projection tomography combined with fluorescent Immunohistochemistry labelling methods can be used to extract angiogenesis related parameters in whole human tumours. Additionally, the method was able to extract clean network topologies that show promise in application to understanding fluid flow and drug transport in real tumours.Open Acces

    Non-invasive vascular assessment using photoplethysmography

    Get PDF
    Photoplethysmography (PPG) has become widely accepted as a valuable clinical tool for performing non-invasive biomedical monitoring. The dominant clinical application of PPG has been pulse oximetry, which uses spectral analysis of the peripheral blood supply to establish haemoglobin saturation. PPG has also found success in screening for venous dysfunction, though to a limited degree. Arterial Disease (AD) is a condition where blood flow in the arteries of the body is reduced,a condition known as ischaernia. Ischaernia can result in pain in the affected areas, such as chest pain for an ischearnic heart, but does not always produce symptoms. The most common form of AD is arteriosclerosis, which affects around 5% of the population over 50 years old. Arteriosclerosis, more commonly known as 'hardening of the arteries' is a condition that results in a gradual thickening, hardening and loss of elasticity in the walls of the arteries, reducing overall blood flow. This thesis investigates the possibility of employing PPG to perform vascular assessment, specifically arterial assessment, in two ways. PPG based perfusion monitoring may allow identification of ischaernia in the periphery. To further investigate this premise, prospective experimental trials are performed, firstly to assess the viability of PPG based perfusion monitoring and culminating in the development of a more objective method for determining ABPI using PPG based vascular assessment. A complex interaction between the heart and the connective vasculature, detected at the measuring site, generates the PPG signal. The haemodynamic properties of the vasculature will affect the shape of the PPG waveform, characterising the PPG signal with the properties of the intermediary vasculature. This thesis investigates the feasibility of deriving quantitative vascular parameters from the PPG signal. A quantitative approach allows direct identification of pathology, simplifying vascular assessment. Both forward and inverse models are developed in order to investigate this topic. Application of the models in prospective experimental trials with both normal subjects and subjects suffering PVD have shown encouraging results. It is concluded that the PPG signal contains information on the connective vasculature of the subject. PPG may be used to perform vascular assessment using either perfusion based techniques, where the magnitude of the PPG signal is of interest, or by directly assessing the connective vasculature using PPG, where the shape of the PPG signal is of interest. it is argued that PPG perfusion based techniques for performing the ABPI diagnosis protocol can offer greater sensitivity to the onset of PAD, compared to more conventional methods. It is speculated that the PPG based ABPI diagnosis protocol could provide enhanced PAD diagnosis, detecting the onset of the disease and allowing a treatmenpt lan to be formed soonert han was possible previously. The determination of quantitative vascular parameters using PPG shape could allow direct vascular diagnosis, reducing subjectivity due to interpretation. The prospective trials investigating PPG shape analysis concentrated on PVD diagnosis, but it is speculated that quantitative PPG shaped based vascular assessment could be a powerful tool in the diagnosis of many vascular based pathological conditions
    corecore