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Abstract 

The aberrance of the vasculature in tumours has been linked to increased aggressiveness and poor drug 

delivery in tumours. Complexities in the microarchitecture of tumour vasculature occurring on 

microscopic scales can affect fluid flow and drug transport making it difficult to predict tumour response 

to treatment. Given this, mathematical models can play an important role in understanding the various 

aspects of the tumour vasculature that can promote invasiveness and limit drug delivery. In this work, 

computational models are developed to investigate the effect of tumour vasculature on fluid flow and 

drug distribution and novel imaging methods are assessed for their ability to characterise the tumour 

vasculature in whole human tumours. A mathematical angiogenesis model is used to generate 

microscopic details including individual vessel properties on a whole vascular network scale which are 

coupled with a fluid flow and drug transport model. The interstitial fluid pressure (IFP) in the tumour 

model was found to be elevated with increased heterogeneity caused by the presence of a necrotic core 

and heterogenous vessel permeability. Subtle changes to the network on a microscopic scale significantly 

influenced fluid flow in the tumour vessels and tissue.  

Delivery of doxorubicin to tumours was found to be highly dependent on the properties of tumour 

vasculature and blood flow, where regions with excessive branching and vessel tortuosity had reduced 

drug concentrations due to poor blood flow. Hence, the vascular density was not found to be the main 

factor in the accumulation of the drug within the tissue space and it’s uptake by cancer cells. An interplay 

between treatment strategy including dose and administration mode and properties of the vasculature 

was found by evaluating the spatial intracellular concentration. The fluid flow and drug transport models 

showed the significant effect of incorporating the microscopic properties of the tumour vasculature which 

can influence fluid flow and drug distribution on a macroscopic scale. 

The imaging methods assessed in this work shows that Optical projection tomography combined with 

fluorescent Immunohistochemistry labelling methods can be used to extract angiogenesis related 

parameters in whole human tumours. Additionally, the method was able to extract clean network 

topologies that show promise in application to understanding fluid flow and drug transport in real 

tumours.  
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1 Introduction 

1.1 Cancer Background 

According to the World Health Organization, cancer is one of the leading causes of mortality and 

morbidity, with approximately 14.1 million new cases and 8.2 million deaths recorded in 2012. By as early 

as 2025, 20 million new cases are expected annually [1]. Significant time and resources have been invested 

in addressing cancer that have led to vital discoveries in the genetic and functional properties of cancer 

and the development of novel treatment strategies. Although overall mortality rates have reduced, the 

age-adjusted mortality rate for cancer has not seen significant change in the past 50 years [2]. The disease 

is difficult to tackle due to its complexity; it can affect different of types of tissue and arise from mutations 

based on the individual’s genes. As a result, cancer treatment methods have in many cases shown limited 

efficacy with inconsistent outcomes for different patients and cancer types.  

Solid tumours make up approximately 90% of all human cancers. They pose a great challenge for 

treatment with the most common types of treatments being surgery, chemotherapy and radiotherapy 

[3]. Surgery can be most efficient for benign tumours that are isolated and easily accessible, where the 

risk of complication is low. However for some invasive and metastatic tumours that might extend into the 

surrounding tissues or other parts of the body, surgery alone is not a viable form of treatment [4].  

Radiation therapy involves the use of high energy particles to convert oxygen molecules into potent free 

radicals that damage the DNA of cancer cells [5]. The ability of radiation therapy to target the tumour and 

reduce side effects is desirable however hypoxia, commonly found in tumours, limits the use of  radiation 

therapy alone, making it employed more as an adjuvant form of treatment [6]. Additionally, 

chemotherapy which involves the use of intravenously injected chemicals has been shown to be 

inconsistent in the treatment of tumours [7]. Whilst the inefficiency of cancer treatments can be partially 

attributed to the molecular mechanisms of drug resistance at cellular level, numerous studies have shown 

that the tumour microenvironment limits the ability of anticancer drugs to distribute evenly within the 

tumour and to reach cancer cells at lethal concentrations. The unique physiology of tumours presents 

several obstacles for current therapeutic methods. Heterogeneous vascular structure and distribution, 
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high interstitial fluid pressures, dense interstitial matrix and the presence of hypoxic regions are all 

features of tumours that contribute to the limited success of current cancer treatment methods. All these 

characteristics of the tumour microenvironment are incredibly dynamic that vary spatially and temporally, 

change from patient to patient and are tightly coupled where alterations in one property of the tumour 

microenvironment can influence the other. Hence, a detailed understanding of the properties of the 

tumour microenvironment and their effects on fluid flow and drug transport are needed. In what follows, 

a brief overview of the tumour microenvironment and the barriers to drug delivery is given.  

1.2 The Tumour microenvironment – An overview 

Cancer cells initially form from a single cell or a group of cells that have mutated to exhibit a loss of control 

on growth and division [8]. These cells can proliferate in an unregulated manner to form a neoplastic 

lesion embedded in a tissue [9]. Cancer cells in this lesion can interact with normal cells in the surrounding 

tissue to induce changes to the tissue that can promote growth and spread of the lesion leading to the 

formation of a malignant solid tumour. Hence, solid tumours can be described as organs made up of 

cancer and normal cells of different types embedded in an extracellular matrix (ECM) with its own vascular 

supply [10]. Unlike normal tissue, the changes induced by cancer cells cause solid tumours to exhibit 

abnormal properties including aberrant vasculature, poorly functional lymphatics, and high interstitial 

fluid pressure which can play a significant role in the transport and delivery of therapeutics [11, 12]. These 

properties are described more in depth in this subsection. 

1.2.1 Vasculature 

Blood vessels play a critical role in supplying oxygen, nutrients and any required therapeutic molecules to 

cells in tissues. The vasculature in tumour tissue differs strikingly from that found in normal tissue 

featuring several aberrant properties. A better understanding of the origin of the vasculature in tumours 

and how it develops can provide insight into the causes of these abnormalities in tumour vasculature.   

1.2.1.1 Tumour angiogenesis 

Small tumours with a diameter no larger than 2 mm utilize the host vasculature to supply nutrients to cells 

[13]. As the tumour begins to outgrow its own vasculature, avascular regions emerge that lead to hypoxia 

and cell death. Hence for a tumour to grow, new vasculature is formed through sprouting and outgrowth 

from pre-existing vessels in a process termed angiogenesis [14]. The process is regulated by a balance 
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between activator and inhibitor molecules. Activator molecules include diffusible angiogenic factors such 

as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Angiogenesis is a 

normal process that occurs throughout life, playing a role in growth and wound healing [15]. In normal 

angiogenesis, newly formed blood vessels mature rapidly and become stable as the pro and anti-

angiogenic molecules are tightly regulated. In tumour tissue, angiogenic factors secreted by cancer cells 

and other tissue cells are upregulated whilst anti-angiogenic factors are downregulated causing a net 

balance favouring angiogenesis. As a result, new vessels are continuously remodelled and never allowed 

to mature and stabilize, hence, tumours are described as wounds that never heal [16]. The tip in balance 

toward angiogenesis in tumours has not been clearly elucidated, however several stimuli are thought to 

be triggers including hypoxia, low pH, mechanical stress caused by proliferating cancer cells and 

immune/inflammatory response [17-19]. The angiogenesis process involves a number of steps as 

illustrated in Figure 1.1. Initially, factors secreted by cancer cells diffuse and form a gradient to nearby 

blood vessels. Receptors on endothelial cells lining these blood vessels identify these factors and the cells 

begin to secret chemicals that breakdown the basement membrane. Tip endothelial cells of the sprout 

migrate in response to angiogenic factor gradients whilst stalk cells proliferate as a result of angiogenic 

factor concentration. The tube-like structures formed can then differentiate into arterioles, venules and 

capillaries [20, 21].  

 

Figure 1.1:  Illustration of key regulators in angiogenesis (extracted from  [20]) 
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1.2.1.2 Morphology and Architecture 

The vessels formed through angiogenesis in tumours have been found to be heterogeneous and differ 

greatly from their respective normal counterparts [22]. This can be attributed to the abnormalities found 

in the cellular components making up the tumour vessels [23]. Blood vessels are normally made up of 

different cellular components depending on the type and role of the vessel. Capillaries and venules are 

made up of endothelial cells, pericytes and a basement membrane whilst arterioles are also lined with 

smooth muscle cells and are absent pericytes. Endothelial cells play a vital role in regulating blood flow 

and the exchange of nutrients and other permeable solutes with the tissue space. In normal tissue, 

endothelial cells are quiescent forming a single monolayer with tight inter-endothelial junctions that 

allows for efficient exchange of nutrients and other permeable solutes with the tissue space. Cells are 

aligned in the direction of blood flow in a streamlined fashion to optimize perfusion. Tumour endothelial 

cells are activated and are poorly organized as they can stack on top of each other leaving open wide 

junctions with fenestrations that can cause excessive leakiness [24]. The molecular signalling of tumour 

endothelial cells is heterogeneous resulting in a lack of features that define arterioles, capillaries or 

venules [25]. Pericytes that play a role in stabilizing vessels and regulating response to mechanical and 

metabolic stimuli in normal tissue. In tumours, they are highly active, immature and detached from 

endothelial cells resulting in poor pericyte coverage on the vessels which contributes to abnormal flow 

properties [26]. The basement membrane that lines the endothelial cells acts to provide stability to the 

vessels and control the extravasation of solutes and nutrients. Whilst normal vessels possess a thin 

homogenous layer of basement membrane, in tumours, it can be heterogeneous in coverage and 

thickness [27].  

  
 

Figure 1.2: Cells features of microvessel walls in normal vessels (left) and tumour vessels (right) (extracted from [25]) 
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As a consequence of the abnormalities in cells lining the tumour vessels, they exhibit higher vessel leakage 

[28, 29]. Therefore, the permeability of vessels is generally higher in tumours and can vary depending on 

the tumour type and size [30, 31].  An 8-10 fold increase in permeability has been observed in tumour 

tissue compared to normal tissue [32]. The permeability has also been found to be heterogeneous in 

tumour tissue with different regions exhibiting substantially varied permeability [33]. 

In normal tissue, vessels are well distributed and are organised within the tissue space in a hierarchical 

manner starting from arteries branching to arterioles and then capillaries which merge to form venules 

and veins. This structure allows for efficient transport of oxygen and nutrients to cells in the tissue. The 

tumour vasculature lacks this hierarchy with no clear distinction between different vessel types (Fig 1.3.) 

which can be attributed to the abnormal cellular properties [3, 34].  

 

Normal tissue vasculature 

 

Tumour tissue vasculature 

Figure 1.3: Images of the normal and tumour microvasculature (extracted from  [35])              

Due to the constant remodelling in angiogenesis, the architecture of the vasculature in tumours becomes 

tortuous and features complex patterns. Less et al. quantitatively analysed the branching patterns and 

geometric properties of vasculature in a mammary carcinoma [36]. They found the branching patterns 

consisting of several loops including self-loops and nonplanar loops with many branches. Trifurcations 

were a common feature and venous convolutions were found in regions near arterial vessels (Fig. 1.4). 

Vessels exhibited erratic changes in diameter during branching where small vessels were found to branch 

off vessels that were an order of magnitude larger in diameter.  
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Figure 1.4:  Several features of tumour vasculature topology including trifurcations (1), self-loops (2),  characteristic polygonal 

structure of the capillary meshwork, (4) venous convolutions, and (5) small (20~40 µm) vessels branching off of large (200 µm) 

vessels (extracted from [36]) 

The intercapillary distance is an important parameter as it determines the distance required for nutrients 

and oxygen to reach cells. The diffusion limit of oxygen is 100-200 μm with evidence showing that hypoxia 

can develop when the intercapillary distance exceeds 140 μm [37]. Konerding et al. performed another 

study evaluating the vascular architecture of four different tumour cell lines transplanted in mice and 

compared them with the architecture found in two normal tissues, the gut and muscle [38]. The mean 

intercapillary distance varied significantly depending on the tumour and ranged from 76-213 μm. Overall 

the distance was greater than that found in normal tissue which ranged from 35-63 μm. The structure and 

distribution of the tumour vasculature were found to be heterogeneous with some regions being 

avascular. The mean vessel diameter was found to be 2-3 times larger than that in normal tissue, with 

variations in vessel diameter being significantly higher in tumour tissue that in normal tissue. 

1.2.2 Blood flow 

The flow behaviour of blood in vessels is governed by several factors, mainly being the microvascular 

pressure difference between the arterial and venous ends, the geometric resistance to flow and 

rheological properties of blood. The difference in the vasculature between tumour and normal tissue is 

reflected in the blood flow behaviour in tumours. Perfusion characteristics in rat mammary tumours and 

normal tissue were compared showing that the maximum perfusion capacity was lower in tumours and 

decreased as the tumour increased in size [39]. This is caused by the higher geometric vascular resistance 

which was found to be 1-2 orders of magnitude higher than normal tissue [40]. The complex vascular 

architecture with excessive branching and erratic changes in diameter are known to be a cause. 
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Additionally, vessels have a reduced cross-sectional area for fluid flow due to compression by proliferating 

cells which consequently increases resistance and affects shear rate and perfusion [41]. Increased 

geometric resistance to flow was found in P22 carcinosarcoma implanted in different sites. Resistance 

increased with tumour size and varied depending on the tumour site [42]. The viscosity of blood is 

governed by the haematocrit defined as fractional volume of red blood cells (RBC) in the blood. In tumours 

the apparent viscosity is found to be higher, due to plasma loss caused by leaky vessels and erratic changes 

in diameter during branching which increases haematocrit [43, 44]. The change in viscosity can affect the 

pathways taken by the blood and consequently limit flow in some vessels. These discrepancies in 

geometric and viscous resistance to flow in tumours result in some abnormal blood properties including 

unstable flow directions, plasma skimming, stagnant flow and irregular velocities [45]. The presence of 

arterio-venous shunts has been shown to cause blood flow to completely bypass a network of capillary 

vessels and thus divert flow away from some pathways [46]. 

1.2.3 Lymphatics 

Lymphatic vessels play a vital role in blood circulation, tissue fluid homeostasis and immune function. 

Excessive fluid in the interstitium is drained by lymphatic vessels and transported to the lymph nodes, 

which act as filtering stations, after which the fluid is transported back into systemic circulation [47]. In 

tumours, the function of these lymphatic vessels is impaired. The distribution of lymphatic vessels in 

tumour tissues tends be heterogeneous where in most cases they occur mostly in the peritumoural region. 

Lymphatics vessels in the peritumoural region are characterised by their dilated, disorganised and 

excessively leaky nature in comparison to vessels in the intratumoural region which tend to be 

compressed and deformed due to the high proliferation of cancer cells [48-50]. As a result, fluid in the 

intratumoural region is not drained which can lead to pressure build up. 

1.2.4 Interstitial fluid pressure  

The interstitial space is an important mediator in the exchange of oxygen, nutrients and waste products 

between blood vessels and cells. In normal tissue, the transcapillary flow is governed by the hydraulic 

conductivity and protein reflection coefficient in addition to the hydrostatic and osmotic pressure 

differences between the capillaries and the interstitium. Additionally, interstitial fluid pressure (IFP) is 

influenced by the interactions between the stromal cells and ECM molecules as well as the functioning of 

lymphatics. The fluid leakage from capillaries to the interstitium in tumours is several orders of magnitude 
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larger than in normal tissue [51]. This combined with poor intratumoural lymphatic drainage results in the 

hydrostatic and osmotic interstitial pressures of most tumours to be higher than in normal tissue and 

reach values close to 60 mmHg in some tumours [52, 53]. Measurements of the IFP profiles showed 

uniform pressures throughout the core of the tumour with a rapid drop at the periphery [54]. An 

illustration of the differences in the forces that govern transcapillary fluid exchange between normal and 

tumour tissue is shown in Fig 1.5.  

 

Figure 1.5: Forces governing transvascular fluid exchange (extracted from [55]) 

Although the lack of lymphatic drainage and high vessel leakiness are known to play a major role in raising 

IFP in tumours, other factors are thought to come into play including changes to the morphology of 

fibroblasts and modification of the ECM. Measurements of osmotic pressure in tumours showed that the 

transcapillary oncotic pressure gradient was close to zero [56]. This demonstrates that the transcapillary 

fluid exchange in tumours is governed mainly by the hydrostatic pressure difference [57]. 

1.2.5 Implications for drug delivery 

 Intravenous infusion is the most commonly adopted form for delivery of chemotherapy drugs. In order 

for the drug to be effective, the therapeutic agent must travel from the injection site and accumulate 

within the cancerous cells at large enough concentrations to induce cell killing. Several drug specific 

properties can affect its delivery from the injection site to the intracellular compartments including the 

pharmacokinetics and pharmacodynamics of the drug, size, surface charge and solubility. After injection, 

pharmacokinetic parameters such as clearance of the drug determine how long the drug remains within 

the individual’s blood stream and the rate at which it is eliminated. Pharmacokinetic parameters depend 

on the drug and individual factors including age, gender and metabolism. The longer the drug remains in 

the system the more likely it is to induce cancer cell death. However, chemotherapeutic drugs are also 
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toxic to normal cells, causing damage to the heart and healthy tissue. Hence, exposure of bioavailable 

drug in the systemic circulation is likely to increase toxicity [58].  

The drug transport process from injection to tumour cells involves several steps that occur on multiple 

time and length scales. The transport of therapeutic molecules within the body occurs mainly through two 

modes of transport, diffusion and convection. Diffusion is slow and only effective over short distances 

whilst convection is much faster but requires the presence of fluid flow; hence convection is necessary to 

transport particles across large distances. The relative contribution of each mode of mass transfer in drug 

transport is measured by the Peclet number, Pe 

 
𝑃𝑒 =

𝐿𝑢

𝐷
 

(1.1) 

 where L is the length scale, u is the fluid velocities and D is the drug molecules diffusivity. Peclet numbers 

larger than 1 suggest that the transport process is convection dominated and numbers lower than 1 show 

transport to be diffusion dominated. Upon injection the drug distributes rapidly within the body through 

convection via blood circulation. After entering the target tissue through the feeding arteries, the drug is 

transported mainly through convection within the tumour vasculature where the Peclet number is much 

greater than 1. The extravasation of drug from the vessel to the interstitial space occurs through a 

combination of diffusion and convection. The diffusive flux is dependent on the vessel permeability and 

the drug concentration difference between the vessel and interstitial space. Convective flux is dependent 

on the rate of fluid leakage from the vessel which is in turn governed by the transvascular pressure 

difference [59]. Drug transport within the interstitial space is achieved through a combination of diffusion 

and convection, but the latter is usually weakened. Cancer cells in the tissue space take up the drug 

through the cell membrane by passive or active transport where the drug binds to the DNA to induce cell 

death [60].  

The steps involved in drug transport can be affected by the properties of tumour microenvironment in 

multiple ways. In the target tissue, the presence of vessels plays a critical role in allowing the drug to reach 

all parts of the tissue. The chaotic and tortuous nature of the vasculature in tumours can impede blood 

flow and consequently limit the distribution of the drug within the vessels [61]. Heterogeneous vascular 

distribution with some avascular regions can lead to non-uniform drug distribution within the tumour 

tissue. The presence of arterio-venous shunts described in section 1.2.1 can cause the drug to completely 

bypass a network of capillary vessels [46]. Hence, cells in these regions or in avascular regions can escape 
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treatment. Whilst the leakiness of tumour vessels might be thought to aid in the transport of the drug 

from the vessel into the interstitial space, in many cases the opposite is found to be true where poor 

extravasation of the drug occurs. In normal tissue transvascular transport occurs mainly by convection 

through fluid flux, however in tumours the high IFP caused by the leaky vessels reduces transvascular flux 

and extravasation. Therefore, drugs move across the vessel wall in tumours mainly through diffusion 

which occurs on a slower time scale [62]. Intratumoural and intertumoural variations in vessel leakiness 

contribute to heterogeneous extravasation of the drug and uptake by the interstitial space. This provides 

another barrier to drug delivery in tumours and causes varying responses to treatment within a tumour 

and from patient to patient. 

If the drug is able to penetrate the vessel walls and enter the extravascular space, its transport in the 

interstitial space is dependent on fluid flow velocities and the diffusive properties and uptake kinetics of 

the drug. Convective transport through fluid flux can allow the drug to traverse long distances in short 

time scales. In tumour tissue the IFP is high in the center with pressure gradients nearing zero which limits 

the convective transport of drugs. Hence, transport can occur only through diffusion which is distance 

limited and is relatively slow. Hence, regions beyond a certain distance from the vessels are not able to 

receive adequate concentrations of the drug. The pressure at the tumour periphery has been found to 

drop rapidly, creating a large pressure gradient with the tumour center which presents another issue [63]. 

Large fluid fluxes towards the tumour periphery are likely to exist which could cause the drug to be cleared 

out of the tumour. The structure and mechanical features of the tumour extravascular space can also limit 

drug transport. The dense ECM in tumours not only presents a physical barrier for drug transport and 

increases diffusion distance, but the components of the ECM can bind to the drug thereby limiting uptake 

by cancer cells [64]. High proliferation of cancer cells in the tumour tissue reduces the amount of space 

available for drugs to diffuse through [65].  

1.3 Objectives 

The aforementioned properties of tumour microenvironment highlight the multiple physical barriers 

posed that can limit the distribution of anticancer drugs and promote tumour growth and metastasis. 

Additionally, the genetic nature of tumour development can cause these features to vary both 

intertumourally and intratumourally, resulting in a heterogeneous response to treatment. Therefore, an 

in-depth understanding of the tumour microenvironment and its influence on transport is required in 

order to develop new strategies for enhanced treatment efficacy. Computational modelling methods hold 
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some promise in understanding the complex interplay between the intrinsic properties of tumours and 

the influence of these properties on drug uptake and distribution within tumour tissue. These modelling 

tools can provide a cost-effective approach and potentially useful insights that are not fully accessible 

through experimental means, thereby reducing empiricism and uncertainty. Computational models allow 

for comprehensive sensitivity analyses to identify the most influential properties of the tumour 

microenvironment and vasculature on drug transport. The multiple steps involved in drug delivery can be 

examined exclusively and various parameters related to the drug such as dose, physical and chemical 

properties can be easily controlled to optimize treatment strategies. Hence, given this and in the context 

provided in the preceding subsections, the overall aim of this work is to develop an understanding of the 

heterogeneity of the microvasculature and its role on fluid flow and drug transport using computational 

methods integrated with laboratory data. The strategy is to incorporate details of the vasculature on a 

microscopic scale whilst still retaining macroscopic view, so that the work is multi-scale in nature. To 

achieve this, we set out the following objectives: 

1. Perform a thorough literature review on the current research analysing the tumour vasculature, 

and models describing drug transport and fluid flow in tumours. 

2. Mathematically create a geometry of the tumour vasculature that can capture the properties of 

vasculature in real tumours.  

3. Investigate fluid flow behaviour in the geometries generated in objective 2 using fluid flow models 

that incorporate the microscopic features of tumour vasculature. Examine the influence of 

morphological features of tumour vasculature on fluid flow. 

4. Couple the fluid flow and tumour vasculature model with a drug transport model to describe the 

transport, distribution and uptake of anti-cancer drugs in solid tumours. Examine the influence of 

various properties of the tumour vasculature and drug on its cellular uptake. 

5. Develop and assess protocols to image and characterize the vasculature in a whole tumour (cm 

scale) at microscopic resolution. The 3D images of the vasculature in tumours are used to 

determine angiogenesis parameters and characterize the vascular structure in addition to 

validating the angiogenesis model used in the fluid flow and drug transport models.  

1.4 Overview of thesis 

This thesis is divided into 6 chapters which follow the order of the objectives set. In chapter 2, a 

comprehensive review of the methods used to characterize and describe the vasculature in solid tumours 
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is provided first. This is followed by a review of the studies investigating fluid flow and drug transport in 

solid tumours with a specific focus on those employing computational and mathematical methods. 

Chapter 3 presents a mathematical model developed to generate the vasculature in tumours using 

angiogenesis-based models and the coupling of this with fluid flow models to examine various aspects of 

fluid flow in solid tumours. Chapter 4 combines the model developed in chapter 3 with a drug transport 

model to investigate the interplay between the tumour vasculature and drug properties and their 

influence on drug distribution and uptake.  In chapter 5, work is presented on developing a protocol to 

image the vasculature in whole tumours at µm scale.  The feasibility of the imaging protocol to extract key 

parameters is demonstrated which can be used to assess angiogenesis and the structure of vasculature in 

real tumours. Finally, main findings and contributions of the study are summarized in chapter 6, along 

with recommendations for future work.  
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2 Literature review 

In this chapter, a review of the topics related to the objectives of this work are presented. At first, the 

mathematical and imaging methods used to describe the tumour vasculature and obtain important 

parameters related to angiogenesis are reviewed. Secondly, a comprehensive review of the techniques 

used to analyse and understand fluid flow in tumours is presented with a focus on mathematical and 

computational models. Thirdly, previous mathematical modelling studies on drug transport in tumours 

are reviewed. Finally, a summary is provided of the gaps in literature and opportunities to expand on 

current knowledge.  

2.1 Characterizing the tumour vasculature 

As described in section 1.2.1, angiogenesis is one of the hallmarks of cancer and is a critical determinant 

of its aggressiveness, invasiveness and potential response to treatment [66]. Without vascular support 

through angiogenesis, tumours can become dormant, necrotic or apoptotic [67]. Angiogenesis has been 

found to occur in a number of different tumours and a considerable amount of attention has been given 

to angiogenesis and the tumour vasculature in recent years in order to develop more effective treatment 

strategies for tumours [68]. The tumour vasculature can serve as a therapeutic target and a prognostic 

marker; hence methods that are able to describe the tumour vasculature and extract important 

information such as architecture, heterogeneity and density are valuable. In this subsection, the methods 

available that can be used to capture the geometric features and structural abnormalities of the tumour 

vasculature are described.   

2.1.1 Mathematical models for tumour induced angiogenesis 

Experimental in vitro models where vasculature is grown in 3D tissue can provide an understanding of the 

different processes involved in tumour angiogenesis. However, there are numerous processes involved in 

the formation of capillary networks acting on different spatial and temporal scales that have not been 

understood. Incorporating these complex properties is challenging and can be expensive when using 

purely experimental-based methods. Computational and mathematical models can replicate features of 

experimental systems offering a time and cost-efficient tool to provide insight into the problem. Several 

mathematical models have been developed describing the process of tumour-induced angiogenesis which 

allow for the simulation of capillary network formation [69]. Some of these models use a continuum 
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approach to incorporate different aspects of the tumour angiogenesis process, capturing details such as 

capillary network growth rate and average vessel density [70, 71]. However, they are unable to capture 

details regarding the structure and morphology of the vascular network. Anderson and Chaplain provided 

a breakthrough in representing realistic tumour vasculature through mathematical models when they 

developed a discretized model to track the movement of endothelial cells at the capillary sprout [72]. 

Within the model, the movement of the capillary sprout is dependent on three factors: Random motility 

(analogous to molecular diffusion), Chemotaxis in response to tumour angiogenic factors (TAF) secreted 

by cells in the tumour and Haptotaxis in response to fibronectin gradients. Initially discretized distribution 

fields for TAF, fibronectin and endothelial cells are generated. Then a focus is placed on the endothelial 

cells at the sprout tips which are assumed to be non-proliferative. The movement of cells at the capillary 

sprout is tracked in response to the TAF gradient allowing the model to describe the formation of a 

discrete network of vessels and to capture features including branching, anastomosis and looping. This 

method is based on a five-point central difference scheme where the capillary network is represented in 

2D while the movement of capillary sprouts can occur in 4 directions. In their work, Anderson and Chaplain 

considered the source of diffusing angiogenic factors to be fixed (i.e fixed tumour). Welter and Reiger 

(2010) developed a 3D model investigating the influence of the emerging tumour vasculature by 

angiogenesis on a pre-existing normal arterio-venous network [73]. They incorporated factors in their 

model including vessel regression, tumour cell proliferation and death. Additionally, the changing 

dynamics of blood flow which can influence oxygen delivery and subsequently the angiogenic factor 

distribution were investigated. Vavourakis et al. further developed this model to account for influence of 

mechanotaxis caused by solid stress resulting from tumour growth [74]. Whilst the models developed by 

Welter and Reiger [73] and Vavourakis et al. [74] do well to incorporate the processes involved in vascular 

growth, they are complex and can be difficult to couple with some fluid flow models.  

2.1.2 Imaging angiogenesis  

Mathematical angiogenesis models can provide an estimate of the complex vascular network in tumours, 

however, these model does not incorporate all mechanisms involved in the angiogenesis process. Imaging 

techniques provide an opportunity to obtain real information on the vasculature that can be used to 

analyse and quantify various properties of the vascular network. Visualization of the tumour vasculature 

can be divided into two parts, labelling of the vasculature and imaging which are described below.  
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2.1.2.1 Labelling the vasculature 

The method of vascular labelling determines the type of imaging modality used. A common method used 

to label the tumour vasculature is vascular casting which can provide a 3D structure. This approach 

requires the draining of blood then the intravascular injection of a fixative to preserve the tissue, followed 

with the injection of a casting material such as gelatines, resins or inks [75-77]. Vascular casting can 

provide a highly detailed replica of the entire tumour vasculature making it possible to examine vessel 

geometry, branching patterns and intercapillary distance.  In tumours there is a lack of vessel organization 

and visual distinction between the different vessel types. Hence, vascular casting techniques are not able 

to provide distinction between angiogenic vessels or different vessel types such as arterioles, venules and 

capillaries. 

Immunohistochemistry (IHC) techniques allow for the labelling of proteins in cells using antibodies that 

bind specifically to these cells. Endothelial cell protein markers such as CD31, CD34 and von Willebrand 

factor (vWF) can be stained to label the vasculature [78, 79]. During angiogenesis some endothelial cells 

such as tip cells express unique molecular markers which can be stained to specially image properties 

related to angiogenesis [80]. Additionally, arterioles, venules and capillaries are made up of different 

cellular components as described in section 1.2.1. Molecules expressed by cells specific to arterioles or 

venules can be stained to define the types of vessels being imaged. In fluorescence IHC, after staining with 

antibodies specific to the molecule expressed in the cells of interest, a fluorescent second antibody is used 

that binds specifically to the primary antibody to provide contrast and help visualize the cells. This makes 

fluorescent IHC a valuable technique that can help visualize cells of interest and distinguish between 

different vessel types at the cellular level. A limitation of such a method is that although the cells lining 

the vessels are stained, it does not establish if blood is flowing through these vessels. Another method 

that can address this issue is the use of tracers such as fluorescent lectin or dyes that are injected 

intravenously and can only reach and label vessels through circulation [81]. This allows the capture of 

functioning vessels and makes it possible to determine blood flowing through channels lined by cancer 

cells which has been observed in some highly metastatic tumours [82].  

2.1.2.2 Imaging techniques  

The imaging method used to visualize the labelled vasculature will usually depend on the labelling method 

used. A wide range of imaging methods are available that can provide information in multiple dimensions 

and across different spatial scales. Here the focus is on those that are able to achieve resolutions high 
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enough to visualize tumour vessels where the diameter ranges from a couple of micrometers to several 

hundred micrometers [31]. In vivo imaging techniques are desirable as they provide a real time 

representation of the tumour vasculature and are able to provide information on the response to 

treatment. These include techniques such as magnetic resonance imaging (MRI) and computerized 

tomography (CT) which have been applied in assessing the tumour vasculature [83-85]. The resolutions 

achieved by these methods are on the order of several hundred micrometers making them unsuitable 

when attempting to obtain a detailed 3D visualization of the tumour vasculature at high resolutions. 

Alternatively, intravital microscopy is an in vivo imaging technique which can provide high resolution 

images of the tumour vasculature.  This technique is combined with the intravenous injection of tracers 

and has been applied to obtain in vivo 3D images of the vasculature from mammary adenocarcinomas 

and osteosarcoma’s implanted in mice where they were able to resolve spatial heterogeneities at the 

microscopic level [86-88]. However, a major limitation of intravital microscopy is the depth of tissue region 

that can be analysed (200-400 μm) which accounts for only a small fraction of the tumour size.  

Up till now, ex-vivo imaging techniques have remained most useful in their ability to image the tumour 

vasculature at high resolutions whilst providing a global view of the vascular structure. Micro-computed 

tomography (μCT) is an ex-vivo imaging method where 2D X-ray projections are taken at defined angular 

steps around an axis of rotation which are then used to obtain a 3D reconstruction of the vasculature. The 

resolutions achieved can be on the order of several micrometers providing sufficient resolution to 

distinguish between individual capillaries [89]. Vascular casting is usually employed as a method for 

vascular labelling with μCT when imaging the tumour vasculature. Folarin et al. applied this technique to 

mice tumour models derived from human colorectal cancer to quantify parameters of the vascular 

architecture including branch angles, intercapillary distance and vessel diameter distribution [90]. Savai 

et al. combined vascular casting and μCT imaging to evaluate the effect of anti-angiogenic therapy on the 

vasculature in xenograft mouse models of lung cancer by comparing the vascular density in tumours 

treated with an anti-angiogenic drug, bevacizumab, and tumours in a control group [91]. High resolution 

3D images of vasculature from breast cancer xenograft models have been generated to quantify structural 

properties of the tumour vasculature and simulate blood flow within the network to elucidate the 

hemodynamics of tumours [92, 93]. Downey et al. combined Microfil with μCT to image the vasculature 

in subcutaneously tumours grown from human breast cancer cell lines where they analysed structural 

features and identified regions of hypoperfusion which could be linked with necrosis [94]. Using this 
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technique, they were able to investigate the effects of vascular distributing agents on the tumour 

vasculature.  

μCT imaging techniques combined with vascular casting, which is quite a complex technique, requires 

fresh material and can only be applied to animal tumour studies. IHC vascular labelling combined with 

microscopy-based imaging techniques provides a more accurate method of assessing angiogenesis by 

imaging vessel structures with angiogenic molecular markers and the technique can be applied to human 

tumours excised from patients. The main limitation of IHC techniques and confocal microscopy is that 

they are only able to produce 2D images from a thin section of the tissue which may not accurately 

represent the heterogeneity of the vasculature and angiogenic phenotype within the whole tumour. 

Several studies have attempted to address this by combining serial sections of the tumour tissue to 

reconstruct 3D volumes of the vasculature [95-97]. To prepare the tissue, traditional IHC techniques were 

used which included fixation, paraffin embedding and staining.  A series of 2D images were obtained from 

serial sections which were then aligned using automated registration techniques. The method was able 

to provide a high-resolution 3D reconstruction of vasculature in the tumour specimens where the derived 

parameters concerning the architecture of the vasculature were consistent with other traditional imaging 

methods. These studies were however limited by the labour-intensive task of obtaining each section and 

imaging them which limited the depth of the total imaged volume to 300 μm. A recent novel imaging 

system named the “Histocutter” has been developed in house at the Imperial College London that 

overcomes this issue and is based on the same principle of aligning serial sections to reconstruct a 3D 

volume [98]. The system couples a traditional microtome to an imaging hardware to produce a fully 

automated robotic device that is able to construct high resolution 3D images by capturing and aligning 

thousands of high-quality images as thin as 1 μm. The imaging system has  already demonstrated its ability 

to image soft tissues including the brain and lungs which provides promise in imaging blood vasculature 

in tumour tissue [99, 100].  

Optical projection tomography (OPT) is a relatively new 3D imaging method that has been developed in 

the last decade [101]. OPT shows promise as it bridges the gap between conventional microscopy and 

MRI. It is able to image specimens as large as 15 mm at high resolutions, making it possible for quantitative 

analysis of data spanning 3 orders of magnitude from μm to cm. The imaging technique can be used in 

combination with fluorescent staining as a vascular labelling method. After labelling, optical clearing 

methods are used to make the sample transparent and thus reduce scattering and absorption of light. The 

specimen is then mounted on a motor which is rotated at incremental angles from which images are taken 
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over a 360 revolution. The set of images obtained from these angles are then processed and 

reconstruction algorithms are applied to obtain  a 3D image of the specimen [102]. The method has been 

applied to image vasculature in zebrafish [103, 104]. Recently, it has been applied to vasculature in 

tumours grown subcutaneously from murine gliomas and human colorectal carcinoma xenograft. The 

vasculature was labelled using intravenously injected lectin that allowed binding to the active blood 

channels. From these images, it was possible to quantify and validate several structural parameters of the 

tumour vasculature [105].  

 

Figure 2.1: Illustration of OPT imaging (extracted from [101]). 

2.1.2.3 Clinical relevance of imaging angiogenesis  

Given the role of angiogenesis in tumour growth and invasiveness, there has been much interest in 

assessing its significance as a prognostic factor. Microvessel density (MVD) has been used as a marker for 

angiogenesis and has been shown to be an independent prognostic indicator in a number of different 

cancers including breast, lung, prostate, colon and cervical carcinomas [106]. A number of different 

methods have been used to measure MVD. The method developed by Weidner et al. [107] has been 

widely adopted, which involves the identification of vascular “hot spots” in 2D histological sections by 

finding the regions with the greatest density of vessels and counting the number of vessels in this region. 

Other methods sample different regions and calculate density at different magnifications of the 

microscope. IHC staining techniques are used to label blood vessels with endothelial cell specific markers 

such as Ulex, Von Willerband factor (vWF), CD31 and CD34 which are then used to determine the MVD. 

Alternative methods to quantify angiogenesis include the use of VEGF expression, but MVD has been 

shown to provide more consistent results. This was demonstrated in a study by Inda et al. of VEGF and 
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MVD in two lineages of non-small cell lung cancer (NSCL) that were expected to have the same clinical 

prognosis [108]. They found that although the mean VEGF was different for the two types of tumours, 

MVD was not significantly different between them suggesting that CD34 might be a better prognostic 

marker of angiogenesis. 

Although angiogenesis has shown prognostic value in different types of tumours, it’s significance in some 

types of cancers such Epithelial ovarian cancer (EOC) remains unclear. A large amount of work has been 

devoted to elucidating the role and significance of angiogenesis in EOC in the last 20 years. Hollingsworth 

et al. was first to evaluate the association between MVD and the outcome in advanced stage (III and IV) 

ovarian carcinomas to find that high vessel counts confer worse prognosis [109]. In their work they used 

the endothelial cell marker CD34 to count the vessels. This generated significant interest in understanding 

the significance of MVD in prognosis of ovarian tumours. Van Diest et al. assessed the significance of 

microvessel quantification as a tool for prognosis using Ulex as marker for vessels in EOC treated by 

debulking surgery and cisplatin [109]. However, they found no association between MVD and prognostic 

variables including tumour stage and grade. Gasparini et al. used CD31 markers and found MVD to vary 

significantly between the different histotypes. MVD was found to be a significant indicator of OS in 

univariate analysis, however this significance was not retained in multivariate analysis [110]. Volm et al. 

used vWF markers to find a significant correlation between high MVD and formation of metastasis in 

primary ovarian carcinomas [111]. Abulafia et al. used vWF as a vessel marker and found that MVD in 

omental metastasis but not in primary ovarian tumours was correlated with pre-operative CA125 levels 

and patient survival with no correlation found between MVD and the tumour stage or histotype [112]. 

Schoell et al. used vWF, CD31 and CD34 markers to show significant differences in vascularisation between 

survivors of ovarian cancer and those who died of the disease [113]. Brustmann et al. used vWF to find 

increased MVD and heterogeneity of capillary distribution in malignant epithelial tumours when 

compared with benign tumours. [114]. Similarly Darai et al. used CD31 markers to find higher MVD in 

malignant ovarian tumours than borderline and benign tumours [115]. Obermair et al. used CD34 markers 

to find that low MVD was correlated with better survival in univariate analysis, however, MVD failed to 

attain a significant value for multivariate analysis with other prognostic parameters such as age, stage and 

grading [116]. Subsequently, a large amount of literature has been devoted to assessing the role 

angiogenesis in ovarian cancers by quantifying MVD using a number of different antibodies [117-124]. 

More recently, Rubatt et al. examined the independent prognostic value of MVD in untreated advanced 

EOC using CD31 and CD105 as markers for vessels [125]. High MVD using CD105 but not CD31 was found 
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to be an independent prognostic factor for worse progression free survival. This could be attributed to 

CD105 being a marker for proliferating endothelial cells which marks angiogenic vessels. Pirtea et al. built 

on standard IHC studies by investigating the Ki67 proliferative index of tumour vessels highlighted using 

CD34 and CD105 markers [126]. Ki67 was not found to react positively with CD105 stained vessels but 

achieved co-localization with CD34 in some vessels. They were able to find differences in the proliferative 

index between endothelial cells at the tumour core and those at the periphery. Rustico et al. investigated 

changes in MVD in paired primary and recurrent HGSOC tissue samples and its impact on patient 

clinicopathological outcomes [127]. They found MVD and VEGF profiles to not be major drivers in cancer 

evolution in vivo, but rather remain supportive factors. 

From the number of studies highlighted above, it is evident that there is significant interest in 

understanding the role of angiogenesis in tumour growth, metastasis and response to therapy. MVD is a 

commonly used parameter to quantify angiogenesis and to correlate with prognostic factors. However, in 

ovarian carcinomas, the prognostic significance of MVD varies considerably between different studies 

which can be attributed to several factors. The methodology used in these studies introduced many 

variables including the type of marker used to label the vessels, the tissue processing and staining 

methods, and the technique used to count the vessels. In the cases of the labelling marker used, several 

studies have analysed the expression of vWF compared to other markers in malignant and benign tumour 

tissue. The markers for CD31 and CD34 have consistently yielded positive and equally intense staining of 

malignant intratumoural endothelial cells in comparison to vWF regardless of the tissue processing 

method [128-130], although CD31 is expressed during differentiation which could lead to cross reaction 

with plasma cells and lymphatic B cells  [107, 131]. CD34 is more stable than CD31 and is an easily 

reproducible highlighter for endothelial cells [132]. Another reason for the inconsistencies in the findings 

is the method used to quantify angiogenesis. The vascular hot spot method is most commonly used, but 

several problems arise with such a method. The regions of vascular hot spots are chosen by the observer 

which can introduce subjectivity and inter-observer variability and this in combination with the variability 

in staining intensity caused by the use of different antibodies, can further add to the degree of variability 

[133]. Additionally, there was no standardized process to set the cut-off values used to classify high and 

low MVD areas as a function of imaged area or microscope magnification.  Some studies have used median 

values as a cut-off for high MVD whilst other studies used values ranging from 10-40 vessels/field. These 

methodological problems could bias results and may be responsible for the inconsistent findings. In 

addition to the methods used to assess MVD, the failure to replicate observations associating MVD with 
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prognosis in ovarian carcinomas can be attributed to the nature of ovarian tumours. The vasculature in  

ovarian tumours has been shown to be more chaotic and significantly more heterogenous compared to 

breast or cervical tumours [134]. Assessing MVD over a number of 2D tissue sections might not be able to 

capture this heterogeneity introducing bias into the data. Zhang et al. recently investigated the use of 3D 

MVD counting to assess angiogenesis in gastric tumours grown in animal models [135]. Using normal and 

tumour models the 3D MVD was evaluated and found to be correlated with tumour angiogenesis. This 

suggests that 3D imaging methods can be used as tools to assess angiogenesis in a way that captures the 

complexity and heterogeneity of the vasculature which is not available using 2D techniques.  

2.2 Modelling fluid flow in tumours 

Most drugs for solid tumours are delivered intravenously where they rely on convective and diffusive 

fluxes to reach cancer cells. Successful treatment of solid tumours has been shown to be hampered by 

abnormal fluid flow properties which limit the transport of therapeutic macromolecules in the 

vasculature, across the capillaries and in the tumour interstitium [136, 137]. The abnormal fluid flow 

properties are linked to the complex interplay between properties of the tumour microenvironment 

including intravascular flow, capillary filtration, interstitial flow and ECM [57, 138]. Several studies have 

shown that the manipulation of these properties towards normalization can reduce proliferation of cancer 

cells and enhance drug delivery for tumours [139-141]. Awareness that modulations of the fluid flow 

properties can enhance treatment of solid tumours has led to a substantial interest in understanding the 

processes that affect flow dynamics in tumours. A number of experimental methods have been employed 

to acquire information on flow and IFP in tumours. These include invasive methods such as the 

micropuncture technique or the wick-in-needle technique which have been used for in vivo 

measurements of IFP,  showing elevated IFP in tumours and differences between the tumour center and 

periphery [52, 54, 142]. However, the invasive nature of these methods can affect the local 

microenvironment and only provide IFP measurements at isolated spots. Noninvasive in vivo  methods 

have been developed such as dynamic contrast-enhanced MRI (DCE-MRI) to assess tumour IFP using 

interstitial fluid velocity measurements [143, 144]. Whilst this method provides spatial information on IFP 

in tumours, the limited maximum resolution of 230 μm does not capture the flow distribution at 

microscopic scale which can affect flow behaviour on the full tumour scale. 

Due to the lack of noninvasive methods that are able to capture the interstitial flow distribution at 

microscopic scale, mathematical models have been developed to describe fluid flow in tumours and 
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capture the interplay between intravascular and interstitial flow heterogeneities. Jain et al. developed a 

model for the tranvascular exchange and interstitial transport in a spherical solid tumour [63, 145]. In 

their model, interstitial flow was described by Darcy’s law whilst fluid filtration from the vessels is 

described by Starling’ law. The vasculature was assumed to be uniformly distributed with no lymphatic 

vessels present in the tumour model. Interstitial pressure and fluid velocity profiles were estimated as a 

function of radial position in the tumour showing that pressure was highest at the tumour center and 

drops rapidly at the periphery resulting in radially outward velocity. The model was later developed to 

incorporate lymphatics and heterogeneous perfusion by defining a spherical region at the tumour center 

which was assumed to be necrotic and avascular. The presence of necrosis at the tumour center did not 

reduce the interstitial pressure and a similar pressure profile was found which dropped rapidly at the 

tumour periphery [145]. The series of pioneering works by Jain and co-workers have strongly influenced 

subsequent studies. El-Kareh and Secomb applied this model to investigate the effect of vessel hydraulic 

conductivity and tumour shape on fluid filtration and IFP [146]. Soltani and Chen applied this model to 

investigate the effect of tumour shape and size on IFP distribution [147, 148]. These models assumed a 

uniformly distributed vasculature within the tissue space that acted as a source term for the fluid. Their 

results showed that IFP increased with microvascular density (MVD). However, none of these studies 

explicitly considered the effect of vascular flow and vessel size on interstitial pressure and fluid filtration.  

Several studies have attempted to incorporate realistic tumour properties such as size and geometry in 

their model. Goh et al. applied Jain’s transport model to a 2D tumour geometry generated from a CT scan 

of a hepatoma [4]. The tumour model was divided into 3 domains that featured a necrotic core, a viable 

zone featuring partially functional vessels that are uniformly distributed and a normal tissue zone. Their 

results showed that interstitial pressure in the necrotic core and tumour tissue reached steady state 

within 800s with profiles showing a rapid drop at the tumour boundary. Zhan et al. reconstructed 3D 

geometries of different tumours from MR images to investigate the effect of tumour size on drug 

transport [149-151].  These macroscopic models were able to predict fluid flow properties in tumours at 

an organ scale, however, they neglected the influence of spatial heterogeneities in tumour tissue such as 

microvascular density and rate of vessel leakage. The effect of varying microvascular density and 

distribution was examined by Mohammadi and Chen who found a correlation between IFP and 

microvascular distribution although their model did not explicitly resolve blood flow in the vasculature, 

assuming a uniform vascular pressure [152]. Some studies have attempted to incorporate heterogeneities 

of flow and vasculature in tumour models by integrating spatial variations in fluid filtration and 
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permeability mapped from DCE-MRI  [153-155]. However, the resolution achieved by DCE-MRI lacks the 

ability to resolve heterogeneities at the microscopic scale. 

2.2.1 Fluid flow in simplified vascular geometries 

The permeability of vessels in normal tissue is relatively low, limiting the amount of fluid that extravasates. 

Fluid leakage into the tissue is also tightly regulated by the osmotic pressure gradient that causes fluid to 

flow back into the vasculature. Additionally, any excess fluid in the interstitial space is drained by the 

functioning lymphatics, reducing IFP in normal tissue close to zero. Therefore, in normal tissue, it can be 

assumed that there is no coupling between blood and interstitial flow. In tumour tissue, high vessel 

leakiness, lack of functioning lymphatics and osmotic pressure gradient increases IFP which requires 

coupling between vascular, transvascular and interstitial flow. Netti et al. first studied this potential 

coupling by investigating the effect of vessel leakiness on blood flow in tumours [156]. They used a 

perfused animal tumour model to investigate the macroscopic pressure flow relationship in the tumour 

vascular network which was represented as a single, compliant and permeable vessel embedded in a fluid 

at uniform pressure. Investigation of the effects of various properties on arterio-venous pressure and 

pressure profile along a vessel suggested that blood flow and distribution were coupled to transvascular 

flow. Baish et al. expanded on this to incorporate the effect of interstitial flow by unifying vascular, 

transvascular and interstitial fluid flow in a single theoretical framework [157]. A network of permeable 

compliant vessels embedded in an isotropic porous medium organized in a regular mesh and a pair of 

countercurrent vessels was used to describe the tumour geometry. Coupling of vascular, transvascular 

and interstitial flow described by Poiseuille’s, Starlings and Darcy’s law respectively, showed a strong 

dependence of blood flow distribution on increased IFP. Milosevic et al. further investigated the effect of 

IFP on blood flow considering the time-dependent behaviour of vessel diameters and found a strong 

association between high IFP and restricted blood flow in tumours [158]. These models assumed a 

uniformly elevated IFP on the outer surface of the vasculature. Pozrikidis developed an integrated model 

coupling vascular, transvascular and interstitial flow, showing that this assumption can carry errors when 

attempting to estimate extravasation rates [159]. The model was built on the mathematical model by 

Fleischman et al. [160] where the pressure field in the tissue was described as a continuous set of point 

sources distributed along the vessel center line with the density of point sources being described through 

outward flux from the vessel wall without considering the effect of inward flux. Such a formulation might 

not lead to significant errors when applied to normal tissues exhibiting physiological vascular hydraulic 

conductivity values that would result in an overall high net outward flux from the vessels. However, the 
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excessive vessel leakiness encountered in tumours can increase the effect of inward flux and lead to 

significant errors. Pozrkidis addressed this by modifying the flux boundary condition to include the 

distribution of dipoles on the surface of the vessel in addition to the distribution of sources [159]. The 

problem is then represented as a coupled system of integral and differential equations describing the 

distribution of vascular and interstitial pressure over the inner and outer surface of the vessels. This 

formulation was applied to a simple model of a single capillary, tubular in shape, embedded in a porous 

medium which showed heterogeneous distribution of extravascular flux rate along the capillary, 

highlighting the importance of incorporating nonuniformities in IFP on the outer surface of the vessel.  

2.2.2 Fluid flow using complex vascular networks 

The fluid flow models described in the previous section were able to provide great insight into the coupled 

behaviour of vascular and interstitial flow by considering flow in a single capillary or a simple array of 

capillaries representing the tumour network. Simulating fluid flow using realistic tumour vascular 

networks can provide an understanding of fluid flow behaviour in tumours that is grounded in physical 

reality. As discussed in chapter 2.1.1 several mathematical models have been developed to describe 

tumour induced vascular network growth by incorporating key processes of angiogenesis in tumours. The 

method of Anderson and Chaplain [72] is an example of such an approach that has been used to generate 

theoretical capillary networks that capture many features of the tumour vasculature including 

anastomosis, branching and looping. The method reduces computational demand associated with other 

methods and coupling this with a fluid flow model provides an advantage in that the networks generated 

are underpinned by governing biological processes. McDougall et al. applied this approach to generate a 

2D theoretical capillary network and incorporate blood flow in the vessels [161]. In this model the capillary 

network is divided into a series of short cylindrical tubes defined by a specific radius and length where 

Poiseuille’s law is used to simulate blood flow in the network assuming mass conservation at each node. 

Stephenou et al. extended this work to generate 3D capillary networks based on tumour induced 

angiogenesis, and compared results with those obtained from the 2D simulations [162]. McDougall et al. 

took this further to incorporate the non-Newtonian behaviour of blood and coupled this with vessel 

growth to simulate adaptive vessel remodelling in response to hemodynamic forces [163]. They were able 

to investigate the effect of the vascular network structure and various properties such as vessel radius 

and blood viscosity on blood flow distribution. Welter and Rieger simulated blood flow in a network 

developed using a vascular remodelling model that describes the transformation of an original arterio-

venous vascular network of the host tissue into a tumour vessel network during tumour growth [73].  
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The aforementioned studies have only described blood flow in the network and did not consider 

transvascular or interstitial flow. Several models have simulated vascular and interstitial flow in tumour 

models with complex network architecture [e.g. [164-166]]. Given the complex nature of tumour 

vasculature with its irregular geometry and excessive branching, several different approaches have been 

developed to address the coupling between vascular and interstitial flow in tumour models with complex 

vascular networks. One approach involves combining the heterogeneous capillaries and interstitial tissue 

in a small domain into a homogenous continuum from which its transport properties are calculated that 

are then homogenized to give a continuum description of the problem in terms of vascular density for 

larger domains [167]. A similar homogenization approach has been used in several models coupling 

tumour induced angiogenesis with fluid flow. Zhao et al. applied a fluid flow model coupling vascular, 

transvascular and interstitial flow to a tumour vascular network generated using Anderson and Chaplain’s 

approach [165]. The original angiogenesis model was modified by using a 2D nine-point discrete scheme 

to allow the vessels to move in 8 directions. Vascular, transvascular and interstitial flow were described 

by Poiseuille’s, Starlings and Darcy’s laws respectively. In their model, capillary flow was first simulated 

assuming mass conservation at each junction and hence through the entire network. The vascular network 

was allowed to occupy the same lattice space used to discretize for interstitial flow where each vascular 

node corresponds to a discretized site of the interstitial space. Hence, the exchange between the vessel 

node and interstitial node is proportional to starling’s equation which describes fluid flux as a function of 

the term S/V denoting the vessel surface area per unit tissue volume and a matrix A defining the local 

vascular density. Wu et al. developed a similar model incorporating the non-Newtonian behaviour of 

blood flow and capillary compliance [164]. Their results were able to demonstrate the interplay between 

vascular and interstitial flow quantitatively and predict interstitial pressure profiles that are consistent 

with experimental observations. In these works, the S/V term was a uniform value obtained from 

literature data which doesn’t describe the fluid flux as a function of the local vascular geometry.  Wu et 

al. further extended their method by developing the capillary network into a 3D geometry, including 

spatial variations in the S/V term to correspond to local vessel radius and connectivity [168]. Interstitial 

flow within the tumour was found to be slow due to uniformly high interstitial pressure across the tumour. 

Soltani and Chen modelled vascular, transvacular and interstitial flow in adaptive capillary networks that 

allow the radius to change in response to hemodynamic and metabolic stimuli [166]. Their capillary 

network was generated using Anderson and Chaplain’s angiogenesis method with the fluid flow model 

following the approach of Wu et al. [164] and vascular adaption following the work of Pries et al. [169]. A 
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number of other studies quantified the heterogeneity of interstitial pressure distribution by coupling 

interstitial and vascular flow using similar methods [74, 170-172].  

Another approach developed to exchange information between vessels and the tissue space describes 

vessels as a line of sources in similar manner to the Dirac distribution [173]. Welter and Rieger applied 

this approach to simulate Interstitial fluid flow in tumours where the vasculature was generated in 2D 

using their framework for vascular remodelling [174]. Their network model incorporated features such as 

vessel collapse, dilation and varying vessel permeability that depend on vessel maturation level. To 

describe fluid flow between the vasculature and interstitial space, they applied the immersed boundary 

method and replaced the Dirac distribution with a smoothed kernel that allows for the source distribution 

to be resolved on a grid of finite cell size. This immersed boundary method has also been applied by 

Cattaneo and Zunino where they described interstitial fluid flow using vascular geometries built  from 

imaging experiments [175]. In their work, finite element methods were applied to formulate the solution 

for elliptic equations with Dirac terms. The majority of these models described blood flow in the network 

by assuming conservation at each node and hence did not incorporate the extravasated fluid into the 

mass balance for capillary flow. The flux of the fluid from vessels is determined by using uniform vessel 

surface areas per unit volume obtained from literature or by using averaged values corresponding to 

vascular density in tissue nodes and therefore Starlings law is not applied in its exact form. These 

assumptions provide approximations and generalizations that could introduce errors when attempting to 

predict the rate of transvascular fluid flux, blood and interstitial flow.  

As described previously, Pozikridis developed an approach to model the exchange between the vessels 

and tissue where the boundary conditions are set on the vessel walls using the boundary integral method 

which was applied in their to single straight vessel embedded in an infinite tissue domain [159]. Using the 

Green’s function method, pressures can be approximated at the surface of each vessel segment. Pozkridis 

incorporated a distribution of sources and a distribution of dipoles in their flux boundary condition for a 

strong coupling between blood and interstitial flow [159]. Arbitrary geometries can be used by dividing 

the vessel into cylindrical segments with circular cross sections which can be distributed in a nonuniform 

fashion to allow for enhanced resolution at places where pronounced spatial variations arise. They 

extended their application from a single capillary model into a network model where the vasculature was 

represented as bifurcating capillary segments that branch based on deterministic and random parameters 

[176]. The model was able to predict the effect of vascular permeability and interstitial hydraulic 

conductivity on the rate of fluid leakage from the capillaries. However, the network structure used in their 
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model featured a high level of geometric regularity which does not truly capture the structures observed 

in tumour tissues.  

Sweeney et al. [177] simulated fluid flow in tumours where the vasculature was imaged and explicitly 

segmented. A Green’s function method based on Hsu and Secomb’s method for oxygen transport was 

applied to solve for interstitial flow which allows for the whole vascular structure to be incorporated whilst 

reducing computational intensiveness. Their model was able to predict the elevated interstitial pressures 

and perfusion data that were in agreement with physiological data. The model did not incorporate 

vascular adaption and heterogeneities in vascular hydraulic conductivity which can have implications on 

fluid flow overall, however the study provides an understanding of fluid flow in realistic tumour 

geometries. 

2.3 Modelling drug delivery in tumours 

To provide an improved basis for the design of better therapeutic strategies, it is important to understand 

the interplay between the tumour and drug properties and determine the ability of the drug to effectively 

accumulate within cancer cells and induce a positive response to treatment. Mathematical and 

computational models combined with experimentally measured parameters for drug transport provide a 

cost-effective approach to this problem for a number of reasons: A comprehensive set of parameters can 

be tested for sensitivity analyses to determine the key and influential factors; the drug transport process 

involves multiple steps which can be examined individually and in an integrated manner; and finally, 

clinically relevant parameters, such as the dosage and administration mode of the drug, can be 

incorporated into the model over a wide range values, reducing the number of experiments required. A 

wide spectrum of mathematical models have been developed towards achieving these goals. These 

models can be generally divided into pharmacokinetics (PK) models and transport models. Physiological 

based PK models (PBPK) are a subset of the former and are based on dividing the tissues and organs of 

interest into compartments that, as a whole, make up a biological system in which adsorption, 

distribution, metabolism and excretion can be determined [178]. Pharmacodynamics (PD) models can be 

incorporated into the model to study the effect of the drug on the body. PBPK models describe the 

temporal concentration profile of the drug as an average within the compartments, with each 

compartment being treated as a well-mixed system [179]. Unlike compartmental models which are 

described by a set of ODEs, transport-based models use PDEs for explicit descriptions of fluid flow and 

drug transport in a pre-defined domain of interest, so that they can predict not only temporal variations 
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but also spatial distributions of therapeutic agents [150]. Transport based models can be further divided 

into macroscopic and microscopic transport models depending on the scale of the processes and domain 

of interest. Macroscopic models treat the tumour as an isotropic, porous medium where blood vessels 

are assumed to be a uniformly distributed source term. This reduces the complexity of the model and 

allows for spatial and temporal profiles of the drug to be evaluated over large length scales. Several 

studies have employed these macroscopic models to describe the distribution of therapeutic molecules 

in tumour tissue [4, 148, 149]. These models can be coupled with tumour geometries obtained from 

medical images to predict the spatial concentration in realistic tumour geometries [4, 149]. The major 

limitation of macroscopic models being that they neglect key microscopic properties that are known to 

be heterogenous in solid tumours such as the vasculature morphology, permeability and ECM and cancer 

cell distribution which can have a significant effect on the transport and uptake of anticancer drugs. 

Microscopic based models can describe the spatial profile of the drug at the single capillary level and take 

into account various microscopic properties of the tumour [180]. A number of microscopic models having 

been developed focusing on different aspects of the drug transport process including the effect of 

vasculature, vessel permeability and interstitial space architecture [170, 171, 175, 181, 182]. These studies 

are reviewed in this section.  

2.3.1 Vascular transport studies 

A geometric model representing the in vivo tumour microenvironment is required to describe drug 

transport in tumours. One type of model representing the tumour geometry are tumour cords which have 

been applied in studying  tumour growth and drug transport [183]. In these models a single straight 

cylindrical blood vessel is surrounded by a cylindrical unit composed of uniformly distributed cells and the 

whole tumour is considered to be an assembly of these tumour cords as show in Figure 2.2. Cord models 

allow for an understanding of the transport of drugs in the tumour interstitial space in relation to distance 

from a blood vessel and its ability to penetrate multiple layers of cells.  
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Figure 2.2: Illustration of tumour cord model geometry where RC is the capillary radius and RT is the tumour cord radius. 

(extracted from [184] 

Eikenberry investigated the influence of dosage on therapeutic efficiency by applying a tumour cord 

geometry model. The concentration within the vessel was spatially averaged and determined using a PK 

model which was coupled with solute transport principles to describe drug extravasation, interstitial 

transport and cellular uptake in the tissue space [184]. The cellular uptake and efflux were incorporated 

using Michaelis Menten kinetics whilst cell killing was described as a function of peak intracellular 

concentration. The findings showed that rapid bolus administration was more suitable for low doses whilst 

at high doses, a 1-hour continuous infusion was more effective. The effect of various properties of the 

tumour microenvironment such as vessel morphology, cell packing density and tumour cord radius were 

investigated and their results showed that higher cell density resulted in a non-uniform drug distribution 

within the cord. Several other forms of the tumour cord model have been applied in other studies [185, 

186].  A major limitation of the tumour cord model is their treatment of the tumour vasculature in a highly 

idealized manner as seen in Figure 2.2 without accounting for the complex branching properties, high 

tortuosity and heterogenous distribution. Incorporating these properties with an explicit representation 

of the vasculature remains a significant challenge not only because it would be computationally intensive 

but obtaining a realistic representation of the vasculature is also a difficult task.  

Some studies have applied mathematical models of tumour-induced angiogenesis (section 2.1.1) to 

generate capillary networks formed in response to angiogenic factors secreted by cells in tumours [72]. In 

these models the vasculature formed is divided into cylindrical segments through which blood flow is 

described by Poiseuille’s law. The interstitial space is assumed to be a homogenous porous medium 

composed of cancer cells and extracellular material through which flow is modelled by Darcy’s law. 
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Vascular and interstitial flow equations are coupled by transvascular flow modelled by Starling’s filtration 

law. Sefidgar et al. applied these principles in combination with Anderson and Chaplains tumour-induced 

angiogenesis model to investigate the effect of heterogenous vascular networks on blood flow and drug 

transport and compared the results with macroscopic models that assume the vasculature to be a 

uniformly distributed source term [181]. Their findings showed that a model with a uniformly distributed 

vasculature predicted higher and more uniform drug concentrations than when the heterogeneity of the 

vasculature is considered. Imaging techniques have been used to obtain the geometrical details required 

to represent the tumour vasculature as described in section 2.1.2 which can be incorporated into the 

mathematical fluid flow and drug transport models. Solving the drug transport equations in tumour 

geometries featuring an explicit representation of the vasculature with all its intricacies is a difficult task. 

To tackle this, Kojic et al. developed a multi-scale finite element method for convective and diffusive mass 

transport [187]. Their model is adapted for application to large tissues where the large vessels are 

modelled as 1D finite elements whilst regions with complex capillary networks are merged with the 

surrounding tissue to form 3D continuum finite elements with corresponding hydraulic and diffusive 

transport parameters. Application of their model to tumour geometries showed gradients in the 

concentration field within the large vessels and in the tissue space. Gradients were also observed between 

the vascular and interstitial space which was attributed to the transport from blood vessels to the tissue 

space. The homogenization of the capillary and tissue domain into a continuum increases the efficiency 

and allows for application to large tumours or whole organs, however steep spatial gradients that occur 

on a micron scale are not captured. Cattaneo and Zunino applied a finite element based numerical method 

to describe drug transport on microscopic scale by coupling vascular, transvascular and interstitial flow 

equations to simulate flow in the tumour whilst solute transport was modelled using the convection-

diffusion equation [175]. To reduce the computational intensity of the problem, the tumour 

microvasculature was represented as a network of 1D channels immersed in the interstitial volume, where 

they acted as a set of sources for transvascular flow as shown in Figure 2.3. Mass transport principles were 

applied to simulate the drug delivery and compare the effectiveness of bolus administered tirapazamine 

(TPZ) with its nanoparticle formulation. The nanoparticles were assumed to transport within the 

vasculature and attach to the vessel walls where the encapsulated drug is released, hence, transvascular 

transport of nanoparticles and their migration in interstitial space were never considered. When 

comparing the different modalities of drug administration, the nanoparticle formulation produced the 

highest concentrations at all time-points.  
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Figure 2.3: Tumour tissue domain with embedded vasculature reduced from 3D and represented as 1D channels (extracted from 

[175]) 

Such models implementing finite element or finite difference methods for drug delivery can readily 

incorporate features such as time dependence and reaction. However, the heterogenous and tortuous 

nature of the tumour vasculature can result in steep spatial gradients in drug concentration in regions 

near the vessel wall. To resolve these gradient, small spatial steps are required which increases the 

computational cost. More so, small time steps are required for fine meshes in order to satisfy the Courant–

Friedrichs–Lewy (CFL) condition required for numerical stability and accuracy, which limits the timescale 

of the simulation. Considering this limitation, Secomb developed a Green’s function based numerical 

method for solute transport where each vessel is divided into multiple segments which represent a 

distribution of solute sources whilst the tissue space is discretized to represent a distribution of sinks 

[188]. Solute distribution within the tissue space can then be expressed as the sum of these sources and 

sinks and hence is a function of the vascular structure and morphology. The application of this method 

reduces the number of unknowns whilst not placing significant restrictions on the time and spatial steps. 

Secomb demonstrated the application of this method by analysing the kinetics of solute washout from 

heterogeneous vascular networks obtained from rat cremaster muscle. The method demonstrated the 

ability to simulate the time-dependent convection and diffusion of an inert solute in complex vascular 

geometries without restricting the time and spatial steps to values that satisfy the CFL conditions 

necessary for convergence in finite element methods. Troendle et al. [189] developed a new method 

utilising molecular mechanics to predict the spatial drug delivery efficiency in tissues. Distribution of drug 

within the vascular network was modelled exclusively through diffusion without incorporation of blood 

flow and its effect on drug distribution. Tranvascular transport was modelled using a kinetic Monte Carlo 
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approach whereby first order rate constants for drug exchange between compartments obtained from PK 

models is first converted into a per-particle probability. The transport in the extravascular space was 

modelled through diffusion. They modelled the transport of doxorubicin and its nanoparticle formulation, 

doxil, using clinically relevant dosing where injection was simulated by placing all the drug molecules at a 

source point in the artery. In their model the vascular network was represented in 2D and some were 

generated manually to represent normal and complex vascular networks. Additionally, a vascular network 

was modelled by tracing of a PET image of tumour vasculature. To analyse the therapeutic efficiency of 

the drugs administered at various doses, a minimum effective dose was defined in the tissue space. In this 

study, Troendle et al. were able to show that the vasculature plays critical role in the optimal dosage 

required and demonstrated the enhanced delivery of liposomal doxorubicin over its free form. Although 

the work provides a framework for analysing the spatial distribution of drugs administered, the study did 

not incorporate the effect of blood flow and convection on the transport within the tumour vasculature 

which can consequently affect the spatial distribution in the tissue space. The reaction and uptake of the 

drug by cells in the tissue space was not incorporated which can have significant implications for its ability 

to penetrate the tissue and distribute as drugs have different uptake and efflux rates. The number of 

vessels was limited to 50 cylinders in the generated vascular networks and 200 cylinders in the network 

extracted from the PET image. 

d’Esposito et al. [105] combined mathematical transport modelling with high resolution imaging of the 

vasculature in intact tumour tissue extracted from mice to predict the fluid flow and spatial distribution 

of therapeutic agents in real tumours. In their work, the vessels were labelled and imaged as described in 

section 2.1.2.2 which were then skeletonized and converted into graph format. To resolve fluid flow, blood 

flow in the network was modelled using Poiseuille’s law where flow was assumed to be conserved in each 

node. Flow in the vasculature was coupled to interstitial flow, modelled by Darcy’s law, using the Green’s 

function approach developed by Secomb et al. [190] for oxygen transport where the vessels are divided 

into a set of sources. Pharmacokinetic models were used to define a vascular input function that 

determines the amount of drug entering the vascular network. Once at the arterial point, a propagating 

front approach was used to describe the movement and distribution of the drug within the vascular 

network based on network architecture and blood flow. The interstitial space was divided into a grid with 

an isotropic resolution of 100 µm and a forward finite difference approach was implemented in which the 

vessels were segmented and divided into radial sources of the drug. Transport across the vessel wall was 

assumed to occur mainly through diffusion and is a function of the difference in vascular and interstitial 
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concentration and hydraulic conductivity of the vessel wall. Drug transport across the vessel wall was 

assumed to occur as a function of a vascular density term S/V which was averaged over the whole tumour. 

The work demonstrated the elevated IFP and heterogenous perfusion observed in tumours which led to 

heterogeneous distribution of Gd-DTPA within the vascular network and interstitial space.  

2.3.2 Transvascular transport studies 

Transvascular transport can be a limiting step in the process of delivering therapeutics to cancer cells. A 

number of mathematical models have focused on developing a better understanding of factors that can 

enhance or limit penetration of the drug into the tissue during transvascular transport. Chauhan et al. 

investigated the effect of vessel pore size and distribution on the penetration and distribution of 

nanoparticles in tumours [171]. Vessels were generated using a 2D percolation model exhibiting a range 

of different pore sizes and varying degrees of heterogeneity. Coupled vascular, transvascular and 

interstitial flows were described by Poiseuille’s, Starling’s, and Darcy’s laws respectively. The vasculature 

was discretized and assigned values of hydraulic conductivities and reflection coefficients to simulate 

heterogenous pore size distribution. Their results showed that the IFP in tumours could be lowered by 

reducing pore size which could potentially allow for small nanoparticles to extravasate from the vessels 

at a greater rate. However, the decreased pore size increases steric and hydrodynamic forces which made 

it challenging for large nanoparticles to penetrate through the vessel walls. For pore sizes large than 140 

nm, the IFP was elevated which limited convection and reduced drug penetration. The work showed a 

correlation between pore size and nanoparticle size in its ability to penetrate the tissue as the optimum 

penetration was found to occur for nanoparticles smaller than 12 nm. Stylianopoulos et al. [170] built on 

this model to account for the effect of nanoparticle surface charge and its electrostatic interactions with 

the vessel wall. The vascular network was generated using Anderson and Chaplains 2D angiogenesis model 

[72]. Nanoparticle transport in the vasculature was modelled as a function of the blood velocity, interstitial 

transport was modelled using the convection-diffusion equation and transvascular transport was 

modelled by starling’s approximation. The permeability and reflection coefficients of the vessel wall were 

modified to account for hydrodynamic and electrostatic interactions between the particles and wall pores 

which were described using the Poisson Boltzmann equation. The results produced from the model 

showed that when the pore size was reduced, transvascular transport of the nanoparticle was significantly 

hindered whilst for large pore diameters, the effect of electrostatic repulsion on transvascular transport 

was negligible.  
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2.3.3 Extravascular transport studies 

In the mathematical drug transport models reviewed so far, the interstitial space was treated as a 

homogenous medium with the cancer cells, ECM and other extravascular components being uniformly 

distributed across the domain of interest. In reality, the extravascular space of tumours can exhibit a high 

degree of heterogeneity which can consequently affect interstitial transport and distribution of 

therapeutic agents. This has been demonstrated in in vitro and in vivo studies which showed that transport 

in the interstitial space can be affected by the distribution of the ECM and packing density of cancer cells 

[64, 65]. Rejniak et al. further investigated this by developing a computational model that explicitly took 

into account the cellular structure of tumour tissue [182]. In their model the tissue morphology was 

explicitly defined in a 2-D domain representing a small patch of the tumour tissue on a length scale of a 

few hundred microns. The boundary on left-hand of the domain was modelled as source term for particles 

from the blood vessels. Transport of the particles in the tissue domain was modelled explicitly through a 

combination of convection and diffusion. To estimate the magnitude of the convective transport 

component, the method of regularized stokeslets was applied to calculate fluid flow whilst the diffusive 

component was modelled by Brownian motion. The model was applied to different tissue geometries with 

varying cell packing densities and degrees of heterogeneity. Furthermore, the model was applied to tissue 

structures generated from digitized histological images of ovarian tumour tissues. From their simulations, 

they concluded that cellular porosity and density can influence the penetration of molecules in a non-

linear manner. The molecules were found to travel at a slower rate in highly porous tissues compared to 

denser tissues. The degree of heterogeneity in tissue morphology led to a non-uniform distribution of the 

molecules which resulted in tissue zones with poor exposure to drugs. Large particles were able to 

penetrate deeper into the tissue, however they accumulated at lower concentrations in regions near the 

vessels whilst smaller particles were able to distribute more uniformly in regions near the vessels.  

2.4 Summary 

In this chapter, a detailed review is provided of the methods used to develop an understanding of the 

tumour vasculature, angiogenesis and fluid flow and drug transport. For fluid flow and drug transport a 

focus was placed on mathematical models and whilst a considerable amount of literature has been 

devoted to study and characterise fluid flow and drug transport in solid tumours, most of these models 

focus on the macroscopic scale and neglect the influence of microscopic properties of the vasculature and 

blood flow [63, 147]. Variations in fluid flow and transport on a microscopic scale need to be incorporated 
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to gain a wider understanding of the barriers to drug delivery and fluid flow. Although a number of fluid 

flow studies have attempted to incorporate the architecture and distribution of the tumour vasculature, 

in 2D [153, 164, 166, 170, 174, 181, 191] and 3D [168], as described in section 2.2, these models did not 

explicitly incorporate several key microscopic properties when analysing fluid flow. When coupling 

vascular and interstitial flow, these models applied homogenization methods where properties of the 

vasculature were averaged over discretized cells. By applying Starlings law using these homogenization 

techniques, only an approximation of the effect of vascular distribution on fluid flow was investigated. 

Macroscopic parameters for the whole tumour such as the surface vascular density term was predefined 

using literature values and used to solve Starling’s equation rather than consider the morphology and 

architecture of the network generated. Blood flow in the networks was assumed to be conserved and the 

effect of fluid extravasation was neglected. However, at the single capillary level, the strong coupling and 

interplay between blood flow and interstitial flow has been demonstrated [157, 159]. In all the models 

reviewed, the permeability of the vasculature was assumed to be uniform across the vascular network 

which does not capture the heterogenous pore size distribution in the tumour vasculature as it can range 

from 7-1200 nm [192]. In terms of evaluating fluid flow in tumours, models need to be developed that 

can model fluid flow in whole tumours with explicit incorporation of the effect of individual vessel 

morphology, such radius, length, orientation and permeability for whole tumour networks whilst 

capturing the strong coupling between blood and interstitial flow. For drug delivery, although a large 

amount of literature is available where drug delivery is evaluated in tumours on a macroscopic scale or 

using average compartmental models [149, 179, 193], limited amount of work has been devoted to 

investigating the spatial distribution of drugs with incorporation of microscopic features of the tumour 

vasculature and blood flow. Secomb [188] has developed a model that describes the distribution of solutes 

in tissues with complex vascular networks. Although it shows significant promise, it has yet to be applied 

to model the distribution of anticancer drugs in tumour tissue. The model developed by Troendle et al. 

[189] shows similar promise however, it application was limited to a 2D domain with a relatively small 

tumour network where the important influence of blood flow and reaction/uptake in the extravascular 

space was neglected. Multiple steps are involved from the point of drug injection to the point where they 

can induce a therapeutic effect including transport within the vasculature, extravasation, interstitial 

transport and uptake/efflux. These steps and their interactions on a microscopic scale with the 

microvascular network need to be considered and at present time, no work has truly investigated this 

issue.  
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Given the important role of the tumour vasculature in fluid flow, drug transport and its clinical relevance 

as discussed in section 2.1.2.3, methods need to be developed that can extract key properties of the 

vasculature. These properties can be used to develop a better understanding of fluid flow and drug 

transport in real tumour geometries and evaluate the significance of the vasculature on the invasiveness 

of the tumour. Previous studies assessing the prognostic significance of MVD in tumours have relied on 

2D methods which led variable and conflicting results. This can be attributed to the nature of the tumour 

vasculature where 2D slices are not able to truly capture its heterogeneity. This limitation can be 

overcome by the use of 3D imaging methods to describe the vasculature at high resolutions over a large 

scale. However, most 3D imaging methods applied to examine the tumour vasculature involve the use of 

μCT and vascular casting which is not specific to angiogenic vessels. In their review He et al. [194] showed 

that MVD detected by CD34 was more relevant as prognostic marker, hence IHC based 3D imaging 

methods where specific molecules can be targeted are required to quantify properties specific to 

angiogenesis.  Several novel IHC based imaging techniques show promise in their ability to provide 3D 

images of the tumour vasculature however so far these methods have been mainly applied to animal 

models.   

As discussed in section 1.3, the overall goal of this project is to develop an understanding of the 

heterogeneity of the tumour microvasculature and its role on fluid flow and drug transport using 

computational methods and assess the ability of novel imaging methods to extract the tumour vasculature 

with high fidelity. To achieve this, the aim is to integrate a fluid flow and drug transport model that 

addresses the issues highlighted in the reviewed studies and incorporate microscopic properties of the 

tumour vasculature to capture a more realistic view of fluid flow and drug delivery in tumours. 

Additionally, novel IHC based 3D imaging methods are assessed in their ability to extract the tumour 

vasculature at a microscopic scale in human tumours. These 3D images can be used to provide key 

properties that can be used to assess the prognostic significance of angiogenesis and be used as an input 

to understand various processes in solid tumours such as fluid flow and drug transport.  
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3 Tumour vasculature and its influence on fluid flow  

3.1 Introduction 

In solid tumours, the delivery of oxygen, nutrients and potential therapeutic drugs is highly dependent on 

fluid flow properties of the tissue. Abnormal fluid flow in tumours such as high IFP has been associated 

with increased metastatic potential and poor prognosis [195]. Developing an understanding of the fluid 

flow behaviour in tumours is key in order to improve the therapeutic efficiency of anticancer drugs. As 

discussed in section 2.2, experimental methods have been applied in measuring and calculating IFP in solid 

tumours, however these are limited to resolutions on the order several hundred microns. Mathematical 

modelling methods provide a cost-effective approach to gaining insight into fluid flow in solid tumours at 

multiple scales. Models that have been applied so far face several limitations as described in section 2.4 

where the strong coupling between vascular and interstitial flow was not incorporated. Additionally, the 

physical architecture and morphology of the vasculature was not accounted for when modelling the 

transvascular flux using Starling’s law.  

In this work a mathematical model is developed by coupling Anderson and Chaplain’s tumour induced 

angiogenesis model [72] with Pozrikidis’s fluid flow model [159]. Anderson and Chaplain’s angiogenesis 

model was extended to 3D to describe unique features of the tumour vascular network including excessive 

branching, looping and high tortuosity. Pozrikidis’s fluid flow model for flow in a single capillary that 

captures the strong coupling between vascular and interstitial flow, was extended from a single capillary 

and applied to complex vascular networks. Applying Pozrikidis’s model, the interstitial pressure is 

integrated over the surface of the vessel, hence the physical structure of the vessel, including length, 

radius and orientation are considered when calculating the pressure profile in the tumour. With this 

model, the effect of transvascular leakage and interstitial flow on blood flow are explicitly incorporated. 

Fluid behaviour in tumour tissue is investigated, along with the effects of various properties such as 

vascular architecture, distribution, tumour necrosis and microscopic details of the tumour network. The 

model was further coupled with a vessel adaption model that describes the variations in vascular 

permeability in order to capture the strong heterogeneity found in tumour vascular networks.  



 

48 
 

3.2 Methods 

3.2.1 Tumour induced angiogenesis model 

To generate the vascular network, a method based on Anderson and Chaplain’s mathematical model for 

tumour induced angiogenesis was implemented. Their model was based on an experimental system 

designed by Gimbrone et al. and Muthukkaruppan et al. where a small solid tumour was implanted in the 

cornea, close to the limbal vessels of a rabbit and mouse test animal [196, 197]. As mentioned previously 

in this thesis, tumour induced angiogenesis first begins when cancer cells secrete angiogenic factors (TAF) 

which then diffuse through the tissue space and create a chemical gradient between the tumour and 

nearby vasculature. Endothelial cells lining these vessels degrade the basement membrane and then 

migrate toward the tumour in response to chemical gradients (chemotaxis). Endothelial cells at the tip of 

the sprout tend to be inactive and endothelial cell proliferation occurs mostly in regions behind the cluster 

of cells at the sprout tip. As the sprout moves toward the tumour it must travel through the ECM which is 

mainly composed of collagen and fibronectin. The interaction of the tip endothelial cells and the ECM can 

significantly impact directional migration of the cells in a process termed Haptotaxis. Specifically, 

fibronectin in the ECM has been shown to enhance cell adhesion to the matrix. Anderson and Chaplain 

used three variables, endothelial cell density n, TAF concentration c and fibronectin concentration f to 

develop a hybrid discrete-continuum model that describes the movement of endothelial cells in response 

to chemotaxis and haptotaxis. The path of endothelial cells at the tip of the sprout are tracked to generate 

the network structure where no proliferation or cell death is assumed to occur at these sprout tips. In 

addition to chemotaxis and haptotaxis, the motion of endothelial cells is governed by random motility in 

a similar manner to molecular diffusion and hence endothelial cell flux 𝐽𝑛 can be given by 

 𝐽𝑛 = 𝐽𝑟𝑎𝑛𝑑𝑜𝑚 + 𝐽𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠 + 𝐽ℎ𝑎𝑝𝑡𝑜𝑡𝑎𝑥𝑖𝑠 

𝐽𝑟𝑎𝑛𝑑𝑜𝑚 = −𝐷𝑛∇𝑛 

𝐽𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠 = 𝜒(𝑐)𝑛∇𝑐 

𝐽ℎ𝑎𝑝𝑡𝑜𝑡𝑎𝑥𝑖𝑠 = 𝜌0𝑛∇𝑓 

(3.1) 

Where 𝐷𝑛 is the random motility coefficient, 𝜒(𝑐) is a chemotactic function and 𝜌0 is a constant 

haptotactic coefficient. The conservation equation for endothelial cell density is given by  

 𝜕𝑛

𝜕𝑡
+ ∇. 𝐽𝑛 = 0 

(3.2) 
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Anderson and Chaplain were able to develop a set of nonlinear partial differential equations that govern 

the endothelial cell density, TAF concentration and fibronectin concentration as follows 

 𝜕𝑛

𝜕𝑡
= 𝐷𝑛∇𝑛 − 𝜒(𝑐)𝑛∇𝑐 − 𝜌0𝑛∇𝑓 

𝜕𝑓

𝜕𝑡
= 𝛽𝑛 − 𝛾𝑛𝑓 

𝜕𝑐

𝜕𝑡
= −𝜂𝑛𝑐 

(3.3) 

Where 𝛽 and 𝛾 are the production and degradation rates of fibronectin by endothelial cells respectively 

and 𝜂 is a coefficient describing the rate of TAF uptake by endothelial cells. The system of partial 

differential equations is discretized in 3D using the Euler finite difference approximation  

 𝑛𝑙,𝑚,𝑤
𝑞+1

= 𝑛𝑙,𝑚,𝑤
𝑞

𝑃0 + 𝑛𝑙+1,𝑚,𝑤
𝑞

𝑃1 + 𝑛𝑙−1,𝑚,𝑤
𝑞

𝑃2 + 𝑛𝑙,𝑚+1,𝑤
𝑞

𝑃3 + 𝑛𝑙,𝑚−1,𝑤
𝑞

𝑃4

+ 𝑛𝑙,𝑚,𝑤+1
𝑞

𝑃5 + 𝑛𝑙,𝑚,𝑤−1
𝑞

𝑃6 

𝑓𝑙,𝑚,𝑤
𝑞+1

= 𝑓𝑙,𝑚,𝑤
𝑞

[1 − 𝑘𝛾𝑛𝑙,𝑚,𝑤
𝑞

] + 𝑘𝛽𝑛𝑙,𝑚,𝑤
𝑞

 

𝑐𝑙,𝑚,𝑤
𝑞+1

= 𝑐𝑙,𝑚,𝑤
𝑞

[1 − 𝑘𝜂𝑛𝑙,𝑚,𝑤
𝑞

] 

(3.4) 

Where l,m,w indicate the position on the discretized space and q indicates the time point. The set of 

coefficients P0 to P6 are used to determine the probability of sprout endothelial cells to remain stationary 

(P0), move forward or backwards along the x-axis (P1,P2), y-axis (P3,P4) and z axis (P5,P6) [162]. The 

equations for these probabilities are given in appendix A.1. In the model no birth or death of cells is 

incorporated hence a zero-flux boundary condition is imposed where the endothelial cells are conserved 

within the domain as follows 

 𝜁. (𝐽𝑟𝑎𝑛𝑑𝑜𝑚 + 𝐽𝑐ℎ𝑒𝑚𝑜𝑡𝑎𝑥𝑖𝑠 + 𝐽ℎ𝑎𝑝𝑡𝑜𝑡𝑎𝑥𝑖𝑠) = 0 (3.5) 

Equation 3.3 was non-dimensionalised to replace parameters 𝐷𝑛 and 𝜒(𝑐) and 𝜌0 with non-dimensionless 

parameters 𝐷, 𝜒 and 𝜌. Parameters 𝐷 and 𝜒 were estimated by Anderson and Chaplain using experiments 

that quantitatively analysed random and chemotactic movement of endothelial cells to obtain estimates 

for 𝐷𝑛, 𝜒0 and reference values for 𝑐 [198, 199]. No data is available to estimate 𝜌0, 𝛽, 𝛾 and 𝜂, hence a 
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non-dimensional value for 𝜌 was used with the assumption that 𝜒 is larger. All parameter values used 

have been obtained from Anderson and Chaplain [72]. The time parameter is given in normalized form as  

 
𝑡 =

𝑡̅

𝜏
 

(3.6) 

With where 𝑡 is the normalised time, 𝑡̅ is the real time and 𝜏 = 𝐿
2

𝐷𝑐
⁄  being the timescale given as a 

function of L, the length scale of the domain and 𝐷𝑐, the TAF diffusion coefficient. In the experimental 

work that Anderson and Chaplain based their model on, the average distance of a tumour from the parent 

vessel was 1-2 mm, hence a length scale of L = 1.5 mm is assumed in this study. The simulation is carried 

out in a dimensionless domain [1 x 1 x 1] divided into 40 grid points in each axis. 𝐷𝑐 is taken to be 

1.6 × 10−7cm2s-1 which is based on estimates from experimental data [200] which gives a timescale, 𝜏 =

1.6 days. Parameter values for 𝐷, 𝜒, 𝜌, 𝛽, 𝜂 and 𝛾 were obtained from Anderson and Chaplain’s work and 

are summarised in Appendix table A.1. To generate the vascular network, Equation 3.4 is solved to give a 

continuous distribution field of the TAF, fibronectin and subsequently the endothelial cell density at 

different time points. Using the distribution of endothelial cells with time, the movement of sprout tip 

cells can be tracked discretely which can be used to determine the vascular network formed.  

3.2.1.1 Initialization and solution of continuous model 

Angiogenesis is triggered by the formation of a TAF chemical gradient between the tumour and nearby 

vessels, hence the initial distribution of TAF, 𝑐, within the domain is first defined. The initial distribution 

of TAF can be used to defined different tumour model shapes of interest. Assuming a tumour implanted 

at the edge of the domain, the concentration profile of TAF secreted by the tumour cells can be defined 

as follows 

 
𝑐(𝑥, 𝑦, 𝑧, 0) = 𝑒

−
(1−𝑥)2

𝜖1  
(3.7) 

To simulate the distribution of fibronectin, Anderson and Chaplain highlighted that after activation of the 

endothelial cells in the parent vessels by the TAF gradient they begin to break down the basement 

membrane which allows for plasma fibronectin to leak from the vessel and diffuse into the surrounding 

tissue. The fibronectin binds to the ECM surrounding the parent vessels and creates a high concentration 

of fibronectin around the parent vessel initially. This assumption is supported by experimental 

observations [201]. Hence the initial distribution of fibronectin is described in relation to where the parent 

vessel is located in the simulation and the concentration profile is given by 



 

51 
 

 
𝑓(𝑥, 𝑦, 𝑧, 0) = 𝑘𝑒

−
−𝑥2

𝜖2  
(3.8) 

Where 𝜖1 = 𝜖2 = 0.45 and 𝑘 = 0.75. The initial distribution of endothelial cells 𝑛 can describe the 

location of the parent vessels within the domain. In this work it is assumed that the cells form three 

clusters along the y-axis at  𝑥 = 0 where the parent vessel is located, and the tumour is at 𝑥 = 1. This can 

be described by 

 
𝑛(𝑥, 𝑦, 𝑧, 0) = 𝑒

−
−𝑥2

𝜖3 sin2(6𝜋𝑦) 
(3.9) 

Figure 3.1 shows the initial concentration profiles for TAF, fibronectin and endothelial cells using these 

conditions. The TAF concentration profile is the highest at 𝑥 = 1 where the edge of the tumour containing 

the cancer cells is located. The TAF secreted by these cells diffuses and forms a gradient with nearby 

parent vessels located at 𝑥 = 0. When the TAF activates, the endothelial cells begin to break down the 

basement membrane of the vessel and aggregate to form clusters of cells which then sprout to form new 

vessels. These clusters are represented in the endothelial cell distribution plot (bottom fig 3.1) as three 

peaks. Fibronectin distribution is initialised to be highest in regions near the parent vessel as seen in Figure 

3.1.  

 
Figure 3.1: Initial TAF (Top left) and Fibronectin (Top right) concentration profiles determined using equation 3.7 and 3.8. 

Bottom plot shows initial endothelial density determined using equation 3.9 which can be described as three clusters sprouting 

from parent vessel at x = 0. All plots are show at z = 0.5.  
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TAF and Fibronectin concentrations don’t exhibit significant changes during the simulation however, 

endothelial cell density distribution changes with time in response to the TAF gradient as shown in Figure 

3.2. Initially, the endothelial cells are clustered in regions near the parent vessel. At t = 2.5 (4 days) the 

peak endothelial cell concentrations formed by clusters have moved across the domain in response to the 

TAF gradient and towards the tumour. At t = 5 (8 days) the endothelial cells have advanced approximately 

40% of the way to the tumour and there appears to be merging between the clusters where they now 

form a band. At t =10 (16 days) a 4th cluster appears to have formed as endothelial cells migrate in a 

lateral motion and the initial 3 clusters overlap. At t = 15 (24 days) the endothelial cells form a continuous 

band that has virtually reached the tumour.  

 

 

Figure 3.2: Spatio—temporal profile of endothelial cell distribution in domain. The endothelial cell density is shown at 

dimensionless time t = 2.5, 5, 10 and 15 which corresponds to real time of 4, 8, 16 and 24 days respectively given a domain 

length scale of L = 1.5 mm. 

The results displayed in Figure 3.2 correspond with what was shown in Anderson and Chaplain’s work 

using their 2D model [72] where they attributed the degree of lateral endothelial cell movement to the 

haptotactic effect when the value of 𝜌 was increased. In their work they also demonstrated that the rate 
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of endothelial cell migration was dependent on the haptotactic coefficient and TAF concentration 

gradient. Increasing haptotactic coefficient resulted in reduced endothelial cell migration whilst increasing 

the steepness of the TAF gradient increased the rate of endothelial cell migration. This highlights the 

interplay between endothelial cells, TAF and fibronectin, which can potentially be used to generate 

different vascular geometries of interest.  

Consider a case where a spherical tumour is assumed to be located at the center of the domain at x = y = 

z = 0.5. The tumour is assumed to have a dimensionless radius of 0.5, hence it extends from 0.25-0.75 in 

the x, y and z axis. With this in mind, the initial conditions for the TAF concentration, 𝑐, within the domain 

can be described as follows 

 

𝑐(𝑥, 𝑦, 𝑧, 0) = {

1, 𝑟 < 0.25

(𝑣 − 𝑟)2

𝑣 − 0.25
, 𝑟 ≥ 0.25

 

 

𝑟 = √(𝑥 − 0.5)2 + (𝑦 − 0.5)2 + (𝑧 − 0.5)2 

(3.10) 

Where 𝑣 is a positive constant and 𝑟 is the distance from the tumour center assuming the tumour is 

centred at (0.5, 0.5, 0.5) within the domain. It is assumed that parent vessels exist on each face of the 

domain facing the tumour, and hence fibronectin can be assumed to be uniform as it is being released by 

each face of the domain. Figure 3.3 shows the initial distribution of TAF and endothelial cells described by 

equation 3.10. The steep gradients in TAF concentration towards the center of the domain are defined to 

promote rapid movement of endothelial cells towards the tumour where vascularisation occurs.  

 

Figure 3.3: Initial endothelial cell concentration (left) and TAF concentration (right) for a case where  tumour is centred in the 

domain with dimensional radius 0.5. 
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Figure 3.4 displays the spatial and temporal distribution of endothelial cells in the domain, showing the 

migration of the cells towards the central tumour. 

 

 

Figure 3.4: Spatial and temporal variations of endothelial cell density with a tumour located at the center of the domain. 

The model formulation can be used to generate geometries of interest by defining different initial 

conditions. In tumours, cellular proliferation and poor blood supply cause hypoxia and depletion of 

nutrients for cells, resulting in necrosis in the core regions of the tumour. Necrotic regions have dead 

cancer cells that do not secrete TAF and hence the region may be avascular. This feature can be described 

using equation 3.11 which models the presence of a necrotic core at the center of a tumour as follows 

 

𝑐(𝑥, 𝑦, 𝑧, 0) =

{
 
 

 
 
0.9,                              𝑟 ≤ 0.04
0.8 + 2.5𝑟,   0.04 ≤ 𝑟 ≤ 0.08
1,                    0.08 ≤ 𝑟 ≤ 0.25

(𝑣 − 𝑟)2

𝑣 − 0.25
,                    𝑟 ≥ 0.25

 

(3.11) 
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In equation 3.11 a tumour of dimensionless radius 0.25 is centred in the domain and assumed to have a 

necrotic radius of 0.08. Utilizing the dependency of endothelial cell movement on positive TAF gradients, 

a negative gradient is defined within a radius of 0.08 from the tumour center. Hence, endothelial cells 

would not move into this region. The initial endothelial cell density and fibronectin conditions are the 

same as in the case of a non-necrotic tumour. Figure 3.5 shows the initial TAF concentration for a necrotic 

tumour with the negative gradient apparent at the tumour center. 

 
Figure 3.5:  Spatial profile of TAF concentration in a domain where a tumour with a necrotic core is located at the center.  

The spatial and temporal distributions of endothelial cell density is simulated as shown in Figure 3.6. The 

endothelial cells move towards the tumour, however the density in the necrotic region with a radius of 

0.08 remains close to zero which is apparent when comparing the plots in Figure 3.4 and 3.6. 

 
Figure 3.6: Spatial and temporal evolutions of endothelial cell density in a domain where a tumour with a necrotic core  is 

located at the center. 
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3.2.1.2 Discrete generation of tumour vasculature 

Anderson and Chaplain’s method applies a discrete model to describe the formation of vascular networks 

using the continuum fields generated for endothelial cell density. Their model tracks the movement of 

endothelial cells at the tip of the sprouting vessel and assumes the movement of these tip cells governs 

the motion of the entire sprout. By tracking the path of the cells, the geometry of the entire network 

formed can be captured. Motion of endothelial cells is determined by calculating the coefficients P0 to P6  

define the probability of the sprout tip moving in a certain direction. The probability coefficients are based 

on three components: random, chemotactic and haptotactic movement. As mentioned previously, 

chemotactic movement is dependent on the presence of TAF gradients and haptotactic movement is 

dependent on the fibronectin concentrations, hence the movement of the endothelial cells is governed 

by the interplay between the TAF profile and fibronectin concentrations in the ECM. Branching and 

anastomosis are common features in tumour vasculature, and these are represented following the 

approach of Anderson and Chaplain [72] which is summarized here. Branching from a sprout is dependent 

on three factors: (1) branching age -  a sprout  must reach a mature state, measured by a threshold 

branching age, for it to branch, (2) space - there must be space for the sprout to branch into, checked by 

ensuring there are no other sprouts around the tip, (3)  the number of endothelial cells at the tip -  an 

endothelial cell density threshold must be satisfied for the sprout to branch. If the above three conditions 

are met, the branching of a sprout is given as a probability that is dependent on the local TAF 

concentration. The higher the TAF concentration, the greater the chances are for a sprout to branch. 

Overall, this model describes the movement of a sprout tip from the parent vessels where there is little 

branching due to the age and as the sprouts reach the tumour, the increased age combined with the high 

TAF concentration increases the chance of vessel sprouting. Anastomosis or merging of vessels is 

described simply when a sprout moves into a space occupied by another sprout. The sprout that continues 

to exist is chosen at random.  

The movement of endothelial cells in the domain can be used to generate a vascular network by solving 

equation 3.4 subject to the boundary conditions given by equation 3.5 and the rules for branching and 

anastomosis. We first take the case of a tumour placed at the edge of the domain where the parent vessel 

is at x = 0 and the tumour edge is at x = 1 and the initial conditions for endothelial cell density, TAF and 

fibronectin are described by equations 3.7, 3.8 and 3.9. Figure 3.7 shows the movement of the sprouting 

tips with time and the resulting vascular network. The branching is minimal initially, however, as time 
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passes, and the tips reach the tumour where the TAF concentration is high, branching occurs more 

frequently.  

  

  
Figure 3.7: Formation of capillary network for a tumour at the edge of domain (x =1). 

Figure 3.8 shows the formation of a vascular network for a tumour centred at the domain with a 

dimensionless radius of 0.25 using initial TAF conditions given in equation 3.10. The sprouts move towards 

the center of the domain and reach the tumour by t = 5 (8 days). At t = 10 (16 days) the sprouts have 

branched off and multiplied excessively within the tumour to form a vascular structure. Branching and 

anastomosis continue to take place up to the final simulation time of t = 25 (40 days).  

The formation of a vascular network for a tumour with a necrotic core is simulated using the initial TAF 

concentration described by equation 3.11. The sprout tips move towards the tumour in a similar manner 

to what is observed in Figure 3.8, however, as the tips penetrate the tumour, they are unlikely to branch 

or move into the region where a negative TAF concentration gradient is defined. This is highlighted in 

Figure 3.9 where the vascular networks generated at t = 25 (40 days) for both non-necrotic and necrotic 

tumours are shown in the defined necrotic region within a non-dimensional radius of 0.08 from the center. 

In the left plot of figure 3.9 showing the core region of the non-necrotic tumour, a dense network of 

vessels is observed which is in contrast to the plot on the right showing the core region of the necrotic 

tumour where only a small number of vessels can be observed.  
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Figure 3.8: Formation of a vascular network for a non-necrotic tumour cantered in the domain with a dimensionless radius of 

0.25. 

  

Figure 3.9: Vascular network in spherical tumour with no necrosis (left) and tumour with a necrotic core (right) at final time t = 

25 (40 days). 

3.2.2 Fluid flow model 

In this section, a fluid flow model is presented and applied to the geometries generated using the 

angiogenesis model described in the preceding section. The model is based on the fluid flow model for a 
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solid tumour developed by Pozrikidis [159]  which has been described briefly in Chapter 2.2. To apply the 

fluid flow model, the vascular network is divided into cylindrical segments connected through nodes at 

both ends of the segments. Each segment can be taken to represent an individual vessel. In tumour 

vessels, blood flow can be described as incompressible,  low Reynolds number (<1) flow [43, 202]. As the 

radius of the vessel is much smaller in comparison to its length, it would be reasonable to assume that 

blood flow within tumour vessels is described by Poiseuille’s law that relates the flowrate Q, to the 

pressure gradient along the vessel length and resistance to flow as follows: 

 
𝑄(𝑙) = −

𝜋𝑅4(𝑙)

8𝜇

𝑑𝑝𝑣
𝑑𝑙

 
(3.12) 

Where l is the distance along the vessel length, R(l) is the local vessel radius at l distance along the 

segment, 𝜇 is the blood viscosity, and 𝑝𝑣 is the vascular pressure. The interstitial space can be described 

as a porous medium composed of cellular and ECM components with fluid flow in between these 

structures. Fluid velocities in the interstitial space are typically on the order of 1 μm s-1, and interstitial 

fluid can be assumed to be incompressible and Newtonian [203]. In this case interstitial flow can be 

described using Darcy’s law for flow through porous media 

 𝑢𝑖 = −𝐾𝛻𝑝𝑖  (3.13) 

Where 𝑢𝑖 is the interstital velocity, 𝑝𝑖  is the interstitial pressure and 𝐾 is the interstitial hydraulic 

conductivity defined as 𝐾 = 𝜆 𝜇𝑖⁄ . 𝜆 is porosity of the interstitial space and 𝜇𝑖  is the viscosity of the 

interstitial fluid. Applying mass conservation using equation 3.13 and assuming that 𝐾 is constant, the 

interstitial pressure satisfies Laplace’s equation 

 ∇ ∙ 𝑢𝑖 = 0 

∇ ∙ (−𝐾𝛻𝑝𝑖) = 0 

∇2𝑝𝑖 = 0 

(3.14) 

For which the solution satisfies the Dirichlet boundary condition where pressure 𝑝𝑖  far from the capillary 

surface at the tumour surface is equal to the ambient pressure 𝑝0. Starling (1896) determined that fluid 

filtration across a capillary wall is dependent on the hydrostatic pressure difference and oncotic pressure 

difference across the capillary. Starling’s law for the transport between the vessels and interstitial space 

is given as follows 
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 𝑞𝑒(𝑙) = 𝐿𝑝(𝑙)[𝑝𝑣(𝑙) − 𝑝𝑖(𝑙) − 𝜎𝑑(𝜋𝑣(𝑙) − 𝜋𝑖(𝑙))] (3.15) 

Where 𝑞𝑒 is the fluid flux across the vessel, 𝐿𝑝 is the hydraulic conductivity of the vessel wall, 𝜎𝑑 is the 

oncotic reflection coefficient and 𝜋𝑣 and 𝜋𝑖are the vascular and interstitial oncotic pressures respectively. 

In tumours, the high vascular permeability reduces the oncotic pressure difference between the 

interstitial and vascular space and this was proven experimentally [56]. Hence, equation 3.15 can be 

reduced to  

 𝑞𝑒(𝑙) = 𝐿𝑝(𝑙)[𝑝𝑣(𝑙) − 𝑝𝑖(𝑙)] (3.16) 

Where 𝑝𝑖 is evaluated on the exterior surface of the vessel and is assumed to be independent of the 

angular position due to the small size of the capillaries. Assuming mass is conserved in the capillary, blood 

flow in the vessel can be coupled to transvascular flux as follows 

 𝑑𝑄

𝑑𝑙
+ 2𝜋𝑅(𝑙)𝑞𝑒(𝑙) = 0 

(3.17) 

Equations 3.12 and 3.16 can be substituted into equation 3.17 to give a second order differential equation 

coupling interstitial and vascular flow. 

 𝑑2𝑝𝑣
𝑑𝑙2

+
4

𝑅(𝑙)

𝑑𝑅

𝑑𝑙

𝑑𝑝𝑣
𝑑𝑙

= −
16𝜇

𝑅3(𝑙)
𝐿𝑝(𝑙)[𝑝𝑣(𝑙) − 𝑝𝑖(𝑙)] 

(3.18) 

For a vessel of constant radius, the second term on the left-hand side of equation 3.18 is eliminated. In 

the equation, if the interstitial pressure is constant, the capillary flow becomes decoupled from the 

interstitial flow as is the case in normal tissue. In Pozkridis’s work, the mathematical formulation was 

completed by setting the flux on the vessel surface described by Darcy’s law equal to Starling’s law 

 𝜕𝑝𝑖
𝜕𝑙𝑛

≡ n(𝐱)𝛻𝑝𝑖(𝐱) ≈ −
𝐿𝑝
𝜅
(𝑝𝑣 − 𝑝𝑖) 

(3.19) 

Where 𝑙𝑛  is the normal arc length and n(𝐱) is the unit vector normal to the vasculature pointing into the 

interstitium. The boundary integral formulation can be applied to solve equation 3.14 using Green’s 

function method, giving an expression for the interstitial pressure at field point 𝐱0 in terms of a 

combination of a single- and a double-layer potential defined over the surface of the vasculature.  
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𝑝𝑖(𝐱0) − 𝑝0 = −∫∫ 𝐺(𝐱, 𝐱0)(n(𝐱)𝛻𝑝𝑖(𝐱))𝑑𝑆(𝐱)

𝑆𝑉

+∫∫ (𝑝𝑖(𝐱) − 𝑝0)(n(𝐱)𝛻𝐺(𝐱, 𝐱0))𝑑𝑆(𝐱)
𝑆𝑉

 

(3.20) 

Where 𝑆(𝐱) denotes the tumour surface boundary, n(𝐱) is the unit vector normal to the tumour surface 

𝑆𝑉 is the surface of the vasculature and 𝐺(𝐱, 𝐱0) is the Green’s function solution to Laplace’s equation 

that is dependent on the tumour geometry. Equation 3.20 gives the interstitial pressure as a function of 

the boundary conditions at the tumour surface and over the surface of the vasculature and hence 

interstitial pressure is described as a function of vascular distribution and vascular pressure. For a tumour 

of infinite size Green’s function is given by  

 
𝐺(𝐱, 𝐱0) =  

1

4𝜋|𝐱 − 𝐱0|
 

(3.21) 

When the point 𝐱0 approaches the surface of the vessel, the limit of the double layer potential differs and 

can be expressed using its principal value (PV). The volume being integrated over in equation 3.20 

becomes half leading to the following 

 1

2
[𝑝𝑖(𝐱0) − 𝑝0] = ∫∫ (𝑝𝑖(𝐱) − 𝑝0)(n(𝐱)𝛻𝐺(𝐱, 𝐱0))𝑑𝑆(𝐱)

𝑃𝑉

𝑆𝑉

+∫∫ 𝐺(𝐱, 𝐱0)(n(𝐱)𝛻𝑝𝑖)𝑑𝑆(𝐱)
𝑆𝑉

 

(3.22) 

As mentioned earlier, the interstitial pressure can be assumed to be independent of angular position. 

With this assumption, substituting the right-hand side of equation 3.19 into equation 3.22 gives 

 1

2
[𝑝𝑖(𝐱0) − 𝑝0] = ∫∫ (𝑝𝑖(𝑙) − 𝑝0)(n(𝐱)𝛻𝐺(𝐱, 𝐱0))𝑑𝑆(𝐱)

𝑃𝑉

𝑆𝑉

+∫∫
𝐿𝑝(𝑙)

𝜅
(𝑝𝑣(𝑙) − 𝑝𝑖(𝑙))𝐺(𝐱, 𝐱0)𝑑𝑆(𝐱)

𝑆𝑉

 

(3.23) 

Hence, the problem is reduced to solving equations 3.18 and 3.23 subject to arterial and venous pressure 

values, pa and pv and the tumour surface pressure p0. 



 

62 
 

3.2.2.1 Numerical discretization 

The vasculature is divided into N cylindrical segments as shown in Figure 3.10. Each vessel segment is 

assigned a vessel radius Rj and length Lj.  

 

Figure 3.10: Discretizing of tumour vessel into short cylindrical segments. (extracted from [159]) 

Placing the point 𝐱0 on the surface of the vasculature can allow for equation 3.23 to be written as 

 
1

2
[𝑝𝑖(𝐱0) − 𝑝0] =∑∫ (𝑝𝑖(𝑙) − 𝑝0)(n(𝐱)𝛻𝐺(𝐱, 𝐱0))𝑑𝑆(𝐱)

𝑆𝑣
𝑗

𝑁𝑣

𝑗=1

+∑∫
𝐿𝑝(𝑙)

𝜅
(𝑝𝑣(𝑙) − 𝑝𝑖(𝑙))𝐺(𝐱, 𝐱0)𝑑𝑆(𝐱)

𝑆𝑣
𝑗

𝑁𝑣

𝑗=1

 

(3.24) 

Where 𝑁𝑣 is the number of vessel segments and 𝑆𝑣
𝑗
 is the surface of the jth segment where j = 1,2,3,…..,Nv. 

As the vasculature is discretized with each segment assigned specific values for radius, length and 

hydraulic conductivity, equation 3.24 reformulated 

 
1

2
[𝑝𝑖(𝑙0) − 𝑝0] =∑

𝐿𝑝
𝑗

𝜅
(𝑝𝑣

𝑗
− 𝑝𝑖

𝑗
)

𝑁𝑣

𝑗=1

𝐴
𝑗
(𝑙0) +∑(𝑝𝑖

𝑗
− 𝑝0)

𝑁𝑣

𝑗=1

𝐵
𝑗
(𝑙0) 

(3.25) 

Where 𝑙0 is the arc length, 𝐴𝑗  and 𝐵𝑗  are the influence coefficients for the single and double-layer 

potentials given as  

 
𝐴𝑗(𝑙0) = ∫∫ 𝐺(𝒙, 𝒙0)𝑑𝑆

𝐸𝑗

 
(3.26) 
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𝐵𝑗(𝑙0) = ∫∫ n(𝒙)𝛻𝐺(𝒙, 𝒙0)𝑑𝑆
𝑃𝑉

𝐸𝑗

 

Where 𝐸𝑗  is the cylindrical surface of the jth vessel segment. The evaluation point at arc length 𝑙0 can be 

moved to the mid-point of the nth element at arc length 𝑙𝑛
𝑚 where n = 1,2,3,……,Nv. This provides a system 

of linear equations for the interstitial and vascular pressures. Moving the interstitial pressure in equation 

3.25 to the left-hand side and evaluating at the mid-point give the following 

 

∑[
1

2
𝛿𝑛𝑗 +

𝐿𝑝
𝑗

𝜅
𝐴
𝑗
(𝑙𝑛
𝑚) − 𝐵

𝑗
(𝑙𝑛
𝑚)]𝑝𝑖

𝑗

𝑁

𝑗=1

=∑
𝐿𝑝
𝑗

𝜅

𝑁

𝑗=1

𝐴
𝑗
(𝑙𝑛
𝑚)𝑝𝑣

𝑗
+ 𝑝0 [

1

2
−∑𝐵

𝑗
(𝑙𝑛
𝑚)

𝑁

𝑗=1

] 

 

(3.27) 

Where  𝛿𝑛𝑗  is Kronecker’s delta function. Subsequently, equation 3.18 is discretized using a second order 

finite difference method assuming a constant radius for each vessel segment. 

 𝑝𝑣
𝑗
− 2𝑝𝑣

(𝑗+1)/2
+ 𝑝𝑣

𝑗+1

∆𝑙2
=
16𝜇

𝑅3
𝐿𝑝 [𝑝𝑣

(𝑗+1)/2
− 𝑝𝑖

(𝑗+1)/2
] 

(3.28) 

Where ∆𝑙 = 𝐿/2 and L is the vessel segment length. 𝑝𝑣
𝑗
and 𝑝𝑣

𝑗+1
are the vascular pressures at the either 

ends of the vessel segment and 𝑝𝑣
(𝑗+1)/2

and 𝑝𝑖
(𝑗+1)/2

are the vascular and interstitial pressures at the 

midpoint of the vessel segment. Equation 3.28 can be rearranged to give the midpoint vessel pressure in 

terms of the end point values 

 
𝑝𝑣
(𝑗+1)/2

=
𝑝𝑣
𝑗
+ 𝑝𝑣

𝑗+1
+ 𝛽𝑝𝑖

𝑗+1/2

2 + 𝛽
 

𝛽 = 4
𝜇𝐿𝑝𝐿

2

𝑅3
 

(3.29) 

The transvascular pressure gradient is expressed as follows 

 
𝑝𝑣
(𝑗+1)/2

− 𝑝𝑖
𝑗+1/2

=
𝑝𝑣
𝑗
+ 𝑝𝑣

𝑗+1
− 2𝑝𝑖

𝑗+1/2

2 + 𝛽
 

(3.30) 

This can be used to determine extravasation from the vessels in the discretized equation 3.25. The 

pressure gradient can be calculated at the end nodes of vessel segment j using the second order finite 

difference methods for the first derivative as in Pozkridis’s work and then combined with equation 3.29  
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(
𝑑𝑝𝑣
𝑑𝑥
)
𝐸𝑗

𝑗

≅
−(3𝛽 + 2)𝑝𝑣

𝑗
+ 4𝛽𝑝

𝑖

𝑗+
1
2 + (2 − 𝛽)𝑝𝑣

𝑗+1

(2 + 𝛽)𝐿
 

  (
𝑑𝑝𝑣
𝑑𝑥
)
𝐸𝑗

𝑗+1

≅
−(2 − 𝛽)𝑝𝑣

𝑗
− 4𝛽𝑝𝑖

𝑗+1/2
+ (3𝛽 + 2)𝑝𝑣

𝑗+1

(2 + 𝛽)𝛥𝐿
 

(3.31) 

Where 𝐸𝑗  denotes the end node of segment j. The flowrates at both ends of the segment can be 

determined by applying Poiseuille’s law given in equation 3.12 

 
𝑄𝐸𝑗
𝑗
= (−

𝑑𝑝𝑣
𝑑𝑥
)
𝐸𝑗

𝑗 𝜋𝑅4

8𝜇
= (𝑐𝐴𝑝𝑣

𝑗
− 𝑐𝐶𝑝𝑖

𝑗+1/2
− 𝑐𝐵𝑝𝑣

𝑗+1
)
𝜋𝑅4

8𝜇𝛥𝐿
 

𝑄𝐸𝑗
𝑗+1

= (−
𝑑𝑝𝑣
𝑑𝑥
)
𝐸𝑗

𝑗+1 𝜋𝑅4

8𝜇
= (𝑐𝐵𝑝𝑣

𝑗
+ 𝑐𝐶𝑝𝑖

𝑗+1/2
− 𝑐𝐴𝑝𝑣

𝑗+1
)
𝜋𝑅4

8𝜇𝛥𝐿
 

(3.32) 

Where  

 𝑐𝐴 =
(2+3𝛽)

2+𝛽
   𝑐𝐵 =

(2−𝛽)

2+𝛽
       𝑐𝐶 =

4𝛽

2+𝛽
                              (3.33) 

Hence, the rate of fluid leakage is given by  

 
𝑄𝑒 = 𝑄𝐸𝑗

𝑗+1
− 𝑄𝐸𝑗

𝑗
= ((𝑐𝐵 − 𝑐𝐴)𝑝𝑣

𝑗
+ 2𝑐𝐶𝑝𝑣

𝑗+1/2
− (𝑐𝐴 − 𝑐𝐵)𝑝𝑣

𝑗+1
)
𝜋𝑅4

8𝜇𝛥𝐿
 

(3.34) 

In a case where capillary flow is a simulated in a network with defined nodes and segments, mass 

conservation at the nodes shared between elements requires 

 𝑄𝐸𝑗
𝑗+1

= 𝑄𝐸𝑗+1
𝑗+1

 (3.35) 

Combining equation 3.35 with equation 3.32 and rearranging provides a tridiagonal system of equations 

for the capillary pressure 

 
𝑝𝑣
𝑗+1

(𝑐𝐴
(1) + 𝑐𝐴

(2)) − 𝑐𝐵
(1)𝑝𝑣

𝑗
− 𝑐𝐵

(2)𝑝𝑣
𝑗+2
−𝑐𝐶

(1)𝑝
𝑖

𝑗+
1
2−𝑐𝐶

(2)𝑝
𝑖

𝑗+
3
2 = 0 

(3.36) 
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For j = 2,3,4,……, (𝑁𝑣 − 1) where 𝑟 =
𝐿𝑗
𝐿𝑗+1
⁄  .The right hand side is the interstitial pressure on the surface 

of the vessel. For j = 1 and j = 𝑁𝑣 , boundary conditions are applied where 𝑝𝑣
1 = 𝑝𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙 and  𝑝𝑣

𝑁𝑣 =

𝑝𝑣𝑒𝑛𝑜𝑢𝑠.  

In the case where branching or merging of vessels occurs as shown in Figure 3.11, mass conservation at 

the bifurcating node is applied as follows and is solved for 𝑝0 

 𝑝𝑣
𝑗+1

(𝑐𝐴
(1)
+ 𝑐𝐴

(2)
+ 𝑐𝐴

(3)
) − 𝑐𝐵

(1)
𝑝𝑣
𝑗
− 𝑐𝐵

(2)
𝑝𝑣
𝑗+2

− 𝑐𝐵
(3)
𝑝𝑣
𝑗+3
−𝑐𝐶

(1)
𝑝
𝑖

𝑗+
1
2 − 𝑐𝐶

(2)
𝑝
𝑖

𝑗+
3
2 − 𝑐𝐶

(3)
𝑝
𝑖

𝑗+
5
2 = 0 

(3.37) 

 

Figure 3.11: Bifurcating capillary mass balance relating the pressures at the four nodes 0, 1, 2 and 3 for segments 1, 2 and 3. 

(Extracted from [176]) 

 

 

Equation 3.27 can be reformulated as  

 
−

𝐿𝑝𝐴𝑗

𝑘(2 + 𝛽)
𝑝𝑣
𝑗+1

−
𝐿𝑝𝐴𝑗

𝑘(2 + 𝛽)
𝑝𝑣
𝑗
+ (−𝐵𝑗 + 2

𝐿𝑝𝐴𝑗

𝑘(2 + 𝛽)
)𝑝

𝑖

𝑗+
1
2 =

1

2
𝑝0 − 𝐵𝑗𝑝0  

(3.38) 

Equations 3.36, 3.37 and 3.38 provides a linear system of equations which is solved subject to arterial 

and venous boundary pressures and interstitial tumour surface pressure.  
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The solution procedure is as follows: 

1. Inlet and outlet capillary nodes are assigned arterial and venous pressure parterial and pvenous 

respectively. 

2. Interstitial pressures at the surface of the capillary midpoints are assigned a value p0.  

3. Using equations 3.36 and 3.37 and 3.38 a tridiagonal system of equations is generated and solved 

for the nodal capillary pressures and interstitial pressure. 

Once the nodal capillary pressures and the interstitial pressure at the surface of the segment are 

determined, the interstitial pressure in the tissue is solved using the discretized boundary integral 

formulation in equation 3.25 where the transmural pressure term (𝑝𝑣
𝑗
− 𝑝𝑖

𝑗
) is substituted using equation 

3.30. The interstitial space is discretized and the single- and double-layer potentials Aj and Bj are used to 

evaluate the influence of the vessel segments on each discretized tissue point. Using the influence 

coefficients, the vessel topology, the nodal capillary pressures and interstitial pressure at the vessel 

surface, the contribution of the vessel towards the pressure in interstitial space at point 𝐱 is calculated, 

where 𝐱 = (x, y, z). The interstitial pressure at point 𝐱 is then calculated as a sum of these contributions 

and the influence of the tumour surface pressure as follows  

 

𝑝𝑖(𝐱) =∑𝐵
𝑗 (𝑙𝑛

𝑚) (𝑝𝑖
𝑗+1/2

− 𝑝0) + 𝐴
𝑗 (𝑙𝑛

𝑚)
𝐿𝑝

𝜅

𝑝𝑣
𝑗
− 2𝑝𝑖

𝑗+1/2
+ 𝑝𝑣

𝑗+1

2 + 𝛽

𝑵𝒗

𝒋=𝟏

 

(3.39) 

 

3.2.3 Vascular network regulation 

In order to apply the fluid flow model described above to the vascular network generated from the 

angiogenesis model, the geometry of the network must be regulated and further defined. First nodes are 

assigned to coordinates where tip merging or branching occurs and where the tips initially sprout and 

end. Then further nodes are created along this path that the tip moves. A connection matrix logging the 

connectivity between the nodes is formed based on the data from the raw vascular network generated. 

A depth-first search algorithm is then used to move down from the initial node creating segments based 

on the connection matrix. To define the diameter of the vessels, a maximum diameter is set at the initial 

parent vessels which are assumed to be maintained for subsequent vessels down the network except in 

the case where branching or merging occurs. When this occurs the diameter of the daughter vessel is 
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assumed to decrease in size. The change in radius from a vessel of the nth generation to the (n+1)th 

generation can be modelled as monotonously decreasing as follows 

 
𝐷𝑛+1 = (

𝐷𝑚𝑖𝑛
𝐷𝑚𝑎𝑥

)
𝑚

𝐷𝑛 
(3.40) 

Where 𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥 are defined minimum and maximum diameters and m is a coefficient less than 1. 

Applying the vascular regulation algorithm to the networks generated from the angiogenesis model yields 

the vascular geometries shown in Figure 3.12. 

 

Figure 3.12: Microvascular tumour networks for a non-necrotic tumour (left) and necrotic core tumour (right) generated after 

regulation 

3.2.4 Tumour network and fluid flow validation 

In order to validate the tumour network generation model and the fluid flow model, a list of morphological 

and hemodynamic parameters were calculated and then compared with literature values obtained from 

empirical studies. For morphological parameters the following properties were determined [89, 93] 

 
Tumour volume 𝑉𝑡 =

4

3
𝜋𝑟𝑡

3 

Vascular density  𝑉𝑑 =
1

4 𝑉𝑡𝑖𝑠𝑠𝑢𝑒
∑𝜋𝐷𝑖𝑗

2𝐿𝑖𝑗

𝑁

𝑖,𝑗

 

Length density  𝐿𝐷 =
1

 𝑉𝑡𝑖𝑠𝑠𝑢𝑒
∑𝐿𝑖𝑗

𝑁

𝑖,𝑗

 

(3.41) 
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Vessel surface to volume ratio  𝑆/𝑉 = 4
∑ 𝜋𝐷𝑖𝑗𝐿𝑖𝑗
𝑁
𝑖,𝑗

∑ 𝜋𝐷𝑖𝑗
2𝐿𝑖𝑗

𝑁
𝑖,𝑗

 

Maximum extravascular diffusion distance R =
1

√𝜋𝐿𝐷
 

Where 𝑟𝑡 is the radius of the tumour tissue, 𝐷𝑖𝑗 and 𝐿𝑖𝑗 are the diameter and length of the vessel segment 

between nodes i and j. The following hemodynamic parameters were calculated to validate the fluid flow 

model 

 
mean velocity  𝑢𝑖𝑗 =

4𝑄𝑖𝑗

𝜋𝐷𝑖𝑗
2  

mean shear stress  𝜏𝑖𝑗 =
32𝜇𝑖𝑗𝑄𝑖𝑗

𝜋𝐷𝑖𝑗
3  

Vascular segment transit time  VSTT =
𝜋𝐷𝑖𝑗

2𝐿𝑖𝑗

4𝑄𝑖𝑗
 

Flow weighted mean path lenght MPL =
∑ 𝑄𝑖𝑗𝐿𝑖𝑗
𝑁
𝑖,𝑗

∑ 𝑄𝑖𝑗
𝑁
𝑖,𝑗

 

(3.42) 

 

3.2.5 Vessel remodelling framework 

Blood vessels in tumour tissue are characterized by their heterogeneous nature where they can exhibit 

varying diameters and permeabilities. Blood vessels naturally adapt in response to mechanical and 

metabolic stimuli in order to ensure the tissue is well perfused and supplied with nutrients and oxygen. 

The mechanisms of vessel adaption have been described by Pries et al. [169] which provides a framework 

to model changes in vascular structure in response to stimuli. The parameters in their model were fitted 

specifically to the normal tissue which was studied in their work. Cellular abnormalities in the tumour 

vessels such as large inter-endothelial gaps limit signal conduction whilst the lack of pericyte coverage 

reduces the ability to undergo diameter changes. The impaired structural adaption in addition to the lack 

of experimental data the structural adaption of tumour vessels makes Pries model less applicable in this 

case. Hence, a simple framework is employed in this study, which was developed by Vavourakis et al. to 

model changes in vessel radius, wall thickness and pore radius [74]. In their work, vessel adaptivity is 

described by a single variable, the remodelling time 𝑡𝑚 which is governed by the shear stress on the vessel 

and is given by 
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𝑡𝑚(𝜏) = {

 𝑡𝑚−𝑇                                                           , 𝜏 ≥ 𝜏𝑟𝑒𝑓

𝑡𝑚−𝑇 + ∆𝑡𝑚exp [1 − (1 −
𝜏2

𝜏𝑟𝑒𝑓
2⁄ )] , 𝜏 < 𝜏𝑟𝑒𝑓

 

(3.43) 

where ∆𝑡𝑚 = 𝑡𝑚−0 − 𝑡𝑚−𝑇. 𝑡𝑚−𝑇 is the time value for a vessel to reach the upper limit of remodeling if 

  𝜏 ≥ 𝜏𝑟𝑒𝑓and 𝑡𝑚−0 is the time required if shear stress was zero. Wall remodelling occurs on a large time 

scale and 𝑡𝑚−0 is set to zero whilst 𝑡𝑚−𝑇 is defined as 10 days based on the empirical value adopted by 

Vavourakis et al [74]. Hence, the rate of wall remodelling is inversely proportional to wall shear stress. 

The model assumes that a vessel becomes fully remodelled as it moves from a poorly perfused state to a 

well perfused state. This transition is modelled using equation 3.43 and the reference shear stress value 

𝜏𝑟𝑒𝑓, which defines the transition of a vessel from a hypo-perfused state to a well perfused state. Vascular 

segment transit time is used as an indicator for hypo perfusion as it takes into account blood flow and 

vessel length in each segment. Kamoun et al. defined hypo-perfused vessels as those where velocities are 

below 0.05 mm/s, hence for an average vessel of 0.2 mm in length, the VSTT is approximately 4 seconds 

[204]. Therefore, shear stress can be evaluated in terms of VSTT of 4 second as follows   

 
𝜏𝑟𝑒𝑓 =

8𝜇𝐿

4 𝑅
 

(3.44) 

The change in capillary radius is modelled as a function of the time from when the vessel point was created 

and the remodelling time 𝑡𝑚 which is a function of shear stress. Initially when a node is created through 

the movement of the vessel tip, the vessel is assigned a minimum radius 𝑅𝑚𝑖𝑛  which then expands with 

time and as the shear stress increases. The radius R is described as a function of time as follows 

 

𝑅(�̃�) = {

𝑅𝑚𝑖𝑛                                                                           , at tip node

𝑅𝑚𝑖𝑛 + (𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛) exp[−𝐵𝑅 exp(−𝐶𝑅 �̃�)], Elsewhere
 

(3.45) 

Where 𝑅𝑚𝑎𝑥  is the maximum radius, 𝐵𝑅 = 11 and 𝐶𝑅 = 4.4. The dimensionless time is defined as �̃� =
𝑡−𝑡𝑖

𝑡𝑚
 

where 𝑡𝑖 is the time at which the node was created and 𝑡 is the normalized time defined in equation 3.6. 

Wall thickness, 𝑤, can be assumed to increase linearly as a function of time and is given as 

 𝑤(�̃�) = 𝑤𝑚𝑎𝑥 + (1 − �̃�)𝑤𝑚𝑖𝑛 (3.46) 
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Where 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 are the maximum and minimum wall thickness. The vessel pore size is also 

modelled as a function of time and shear stress. 

 
𝑟𝑝(�̃�) = {

𝑟𝑝𝑚𝑖𝑛                                                                                         , �̃� ≥ 1

2(𝑟𝑝𝑚𝑎𝑥 − 𝑟𝑝𝑚𝑖𝑛)�̃�
3 + 3(𝑟𝑝𝑚𝑖𝑛 − 𝑟𝑝𝑚𝑎𝑥)�̃�

2 + 𝑟𝑝𝑚𝑎𝑥, elsewhere
 

(3.47) 

Where 𝑟𝑝𝑚𝑖𝑛 and 𝑟𝑝𝑚𝑎𝑥 are the minimum and maximum pore size respectively. Initially when a vessel is 

generated, it is assigned a radius 𝑅𝑚𝑖𝑛, pore size 𝑟𝑝𝑚𝑎𝑥 and wall thickness 𝑤𝑚𝑖𝑛. This follows physiological 

behaviour as when a vessel initially sprouts and is in an immature state, it is highly porous with thin walls. 

The hydraulic conductivity of each vessel is determined as a function of wall thickness 𝑤, pore radius 𝑟𝑝 

and the fraction of vessel wall occupied by pores 𝛾𝑝   

 
𝐿𝑝 =

𝛾𝑝 𝑟𝑝
2(�̃�)

8𝜇 𝑤(�̃�)
 

(3.48) 

Simulations were performed with and without network remodelling in order to examine the effects of 

vascular remodelling on fluid flow. 

3.2.6 Model parameters 

To obtain results that can be compared with literature values, baseline parameters for the network 

geometry and fluid flow model were obtained from a range of literature sources where the parameters 

were determined based on relevant experimental data. Table 3.1 shows the values of parameters used to 

generate the tumour vascular network and in the fluid flow model. The computational domain can be 

thought to be made up of normal tissue with a tumour located at the center with a diameter of half the 

length of the domain. At each face of the domain boundary, parent vessels are assumed to exist from 

which vessel sprouts protrude as shown in figure 3.12. The distance from the tumour to the parent vessels 

can range from 1-2 mm, hence a value of 1.5 mm is chosen, which gives a tumour radius of 1.5 mm. The 

hydraulic conductivity of tumour vessels has been shown to be significantly higher than that in normal 

tissue vessels [63]. In the computational model, vessels that are outside the defined tumour region are 

prescribed with normal tissue hydraulic conductivities whilst vessels within the tumour region are given 

tumour tissue hydraulic conductivity values as defined in Table 3.1. Arterial pressure is specified as a 

boundary condition at the starting point of a vessel from the parent vessels. The tips of the vascular 

network are assumed to be connected to the draining vessels and are assigned venous pressure values.  
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Table 3.1 Vascular network and Fluid flow model parameters 

Parameter 
Units Tumour Normal Reference  

Length from tumour to parent vessel mm 1.5 mm - [205] 

Length of domain LD mm 6 mm - [205] 

Minimum vessel diameter Rmin μm 10 - [161] 

Parent vessel diameter Rmax μm  40 - [161] 

Vessel hydraulic conductivity Lp m/Pa.s 2.1 × 10−11 2.7 × 10−12 [51] 

Tissue hydraulic conductivity K m2/Pa.s 3 × 10−14 3 × 10−15 [51] 

Osmotic vascular pressure πv mmHg 28 28 [56] 

Osmotic interstitial pressure πi mmHg 20 8 [56] 

Blood viscosity μ Pa.s 0.004 0.004 [206] 

Arterial pressure parterial mmHg 25 -  [44] 

Venous pressure pvenous mmHg 10 - [44] 

Tumour surface pressure p0 mmHg 0 - [203] 

Tissue density  kg/m3 1050 - [207, 208] 

With regards to parameters required for network remodelling, vessels in the normal tissue region are 

assigned constant values for vessel pore size, wall thickness and the fraction of vessel wall occupied by 

pores as shown in Table 3.2 

Table 3.2 Vascular remodelling parameters 

Parameter 
Units Tumour Normal Reference  

Maximum pore radius rpmax nm 200 5 [209] 

Minimum pore radius rpmin nm 20 5 [209] 

Fraction of vessel wall occupied by pores  𝛾𝑝  - 1.008 × 10−2 1.3 × 10−5 [74] 

Maximum wall thickness wmax μm  4.01 5.5 [26, 74] 

Minimum wall thickness wmin μm 1.49 5.5 [26, 74] 
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3.3 Results and discussion 

3.3.1 Validation of tumour geometry and fluid flow model 

First of all, the generated vascular networks were analysed in terms of the morphological parameters 

defined in equations 3.41 to determine the degree to which the model can replicate properties found in 

real tumour vasculature. Values for the morphological parameters are summarised in Table 3.3. The 

tumour networks included those for a non-necrotic tumour generated using equation 3.10 and two other 

networks with varying degrees of necrosis using equation 3.11. One of the networks had a necrotic core 

with a normalized radius of 0.08 which accounts for 3% of the total tumour volume. Another vascular 

network was generated with a necrotic core radius of 0.16 making the core volume 14% of the tumour 

volume. The morphological parameter values for these tumour models were within the range reported in 

the literature, suggesting that the vascular network model can provide a good representation of real 

vascular networks. The fact that the average vascular density values hardly differ among the three 

networks suggests that as the degree of central necrosis increases, the tips would move away from the 

core and create more vessels in the peripheral tumour region. The variability in the values for the 

maximum extravascular diffusion distance was found to be minimal. However, the method used to 

calculate this parameter is based on the Krogh model for diffusion from capillaries and is determined 

based on the length density rather than the 3D geometry. Hence, they would not be representative when 

considering the whole tumour.  
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Table 3.3 Morphological parameters for different tumour networks with varying degrees of necrosis 

Parameter 
Units Non-

necrotic 

 

Necrotic 

(3%) 

Necrotic 

(14%) 

Literature 

data 

Reference 

Tumour tissue volume mm3 14.137 14.137 14.137 - - 

Vascular density - 𝑉𝑑 % 0.304 0.295 0.312 0.15-1.25 [210-212] 

Length density - 𝐿𝐷 mm/mm3 6.962 6.238 6.671 10-72 [89] 

Surface area to volume ratio 

(vascular) S/V 

mm2/mm3 153.559 149.678 149.571 122-376 [213] 

Maximum extravascular diffusion 

distance - R 

μm 213.833 225.894 218.440 30-250 [38] 

Mean vessel diameter μm 21.198 22.436 22.373 5-225 [28, 36] 

Mean vessel length mm 0.192 0.189 0.189 0.06-0.3 [36, 214] 
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To check if the necrotic regions are avascular, morphological parameters were calculated in the core and 

peripheral regions of the tumour separately. Table 3.4 shows the corresponding comparisons for the 

different tumour vascular networks generated. The volume of the core region over which the parameters 

were calculated was 0.08 for the non-necrotic tumour, and 0.08 and 0.16 for the 3% and 14% necrotic 

tumours respectively. The normalized radius of the tumour for all cases was 0.25 of the tissue lengths. 

The periphery was defined as the difference between the total tumour volume and the core volume. It 

can be seen from table 3.4 that the vascular density for the non-necrotic tumour is higher at the core than 

in the peripheral region. For the necrotic tumours, the vascular density in the necrotic core is extremely 

low, which is expected. Vascular density in the peripheral region increases slightly from the non-necrotic 

tumour to the necrotic tumour with 14% necrosis. The maximum extravascular diffusion distance for the 

necrotic tumours at the core region is high and about 3-fold larger than the extravascular diffusion 

distance at the periphery. This shows that equation 3.11 is suitable for describing a tumour geometry with 

an avascular core defined by a specific radius.  
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Table 3.4 Morphological parameters at different the core and peripheral regions of the different tumour models 

 
 Core region Peripheral region 

Parameter Units Non-

necrotic 

 

Necrotic 

(3%) 

 

Necrotic 

(14%) 

 

Non-

necrotic 

 

Necrotic 

(3%) 

 

Necrotic 

(14%) 

 

Vascular density  % 0.512 0.043 0.084 0.300 0.297 0.338 

Length density  mm/mm3 19.658 0.768 1.434 6.722 6.280 7.256 

Surface area to volume 

ratio   

mm2/mm3 214.816 149.071 133.583 151.557 149.728 149.986 

Maximum extravascular 

diffusion distance  

μm 127.251 643.988 471.100 217.617 225.133 209.452 

Mean vessel diameter  μm 17.875 26.833 25.236 21.405 22.43 11.158 

Mean vessel length mm 0.175 0.150 0.210 0.193 0.189 0.188 
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The geometries of the tumour vasculature were further analysed by calculating the vascular density in 

different regions within the tumour. The regions were defined using different ranges of radii from the 

tumour center. Figure 3.13 shows the distribution of vascular density in different regions in the three 

tumour models. The vascular density in the non-necrotic tumour is relatively uniform up to a normalized 

radius of 0.15 beyond which the vascular density drops at the periphery and on the outer tumour regions. 

In the tumour with 3% volume necrosis the vascular density is negligible at the center and a significant 

rise is seen at the boundary between the necrotic core and vascular region (0.05-0.1). Moving further 

away from the tumour center, the vascular density decreases and is correlated with distance away from 

the center.  For the case of a tumour with 14 % necrotic core volume, the vascular density in the central 

region (0-0.1) is zero, which increases slightly within the defined core region (0.1-0.15), however the 

density is significantly lower than the peripheral regions. This is most likely caused by vessels protruding 

the tumour core. In this case, the vascular density at the outer region of the tumour 0.25-0.3 was found 

to be higher than in the case of the non-necrotic and 3% volume necrotic tumours. The 3% volume 

necrotic tumour core has an overall higher vascular density than the non-necrotic tumour in range 

between 0.05-0.2, whilst the 14% volume necrotic tumour has a higher vascular density in the range 0.2-

0.3. The plots in Figure 3.13 highlight heterogeneity in vascular density for the different tumour models. 

 

 

Figure 3.13: Vascular density for different tumour geometries in different regions defined by radius from center. 
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After evaluating the vascular networks generated for the different tumour models, the fluid flow model 

can be applied and validated by calculating the hemodynamic parameters listed in equations 3.42. Table 

3.5 shows a summary of the tumour hemodynamic parameters averaged over the entire vascular 

network. The values calculated for the model networks correspond with experimentally measured 

hemodynamic parameters in tumours, suggesting the ability of the fluid flow model to capture the fluid 

dynamics in tumours.   

Table 3.5 Hemodynamic parameters for different tumour networks 

Parameter 
Units Non-

necrotic  

Necrotic 

(3%) 

Necrotic (14%)  Literature 

data  

Reference  

Mean flow  nl/min 2.163 1.704 1.379 - - 

Mean velocity  mm/s 0.233 0.209 0.171 0.1-25 [204, 215] 

Shear stress Pa 0.699 0.661 0.543 1-10 [169] 

3.3.2 Characterization of vascular network 

The vasculature in solid tumours exhibits several abnormal structural and architectural features as 

highlighted previously including self-loops, vessel compression and blind ends.  The presence of blind ends 

can cause very low or no flow in some vessels. Another feature which has been suggested is the presence 

of arteriovenous (AV) shunts where short low-resistance, high-flow pathways form in close proximity to 

the feeding vessels. A consequence of these AV shunts is that blood preferentially passes through them 

due the large pressure drop hence blood can completely bypass the entire capillary network. In the 

vascular network generated, some of the abnormalities of the tumour vasculature can be captured as 

shown in Figure 3.14. In the default vasculature generated the presence of AV shunts is not explicitly 

represented, hence to simulate this feature, vessels in close proximity to the arterial end are set to branch 

off where one end is connected to the tumour capillary network and the other end of this branch is 

assigned a venous pressure boundary condition. This allows for tumour vascular networks with and 

without AV shunts to be generated and the influence of this vascular abnormality can be examined.  
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a 

 

b 

 

c 

 
 

d 

 

Figure 3.14: Characteristic features of tumour vascular networks generated include (a) Vessel compression, (b) blind ends, (c) 

self-loops and (d) arteriovenous shunts 

3.3.3 Fluid flow in tumour tissue 

Having obtained a tumour geometry that captures the heterogeneity and complexity of the tumour 

vasculature and a fluid flow model capable of predicting physiological values of blood flow in tumours, 

simulations were performed to examine the fluid flow behaviour in tumours and its sensitivity to tumour 

vasculature related properties. Initially, the case of a non-necrotic tumour without the presence of AV 

shunts is examined using the baseline parameters given in table 3.1. Figure 3.15a shows the simulated 

pressure distribution within the tumour vasculature. The intravascular pressure is maintained at a high 

level through most of the vascular network before it starts to drop rapidly as the tip vessel connected to 

the venule is approached. An average pressure drop per unit length of 0.35 Pa/μm was calculated in the 

vessels towards the venous end, which is in line with physiologically measured values [44]. The 

intravascular pressure in the tumour tissue averages to about 23.2 mmHg which is within the range of 
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values for intravascular pressures obtained through measurements and  simulations in real capillary beds 

(10-40 mmHg) [44, 89, 145]. Figure 3.15b shows the pressure at the outer surface of each segmented 

vessel. The pressure distribution is seen to be heterogeneous with higher interstitial pressures at the 

surface of vessels close to the tumour center than in those in the peripheral region. The hydrostatic 

pressure reaches a maximum of approximately 12 mmHg at the surface of some tumour vessel with an 

average surface pressure of 8.6 mmHg. Pressures at the surface of vessels in the normal tissue were 

determined to be 3-4 mmHg which can be attributed to the low hydraulic conductivities prescribed to 

these vessels. These values were in range of interstitial pressures for normal tissue found in literature data 

(-8 to 6 mmHg) [216]. A standard deviation of 1.41 mmHg is found across the interstitial pressures on the 

vessel surface.  The predicted interstitial pressures in the tumour region are within the range of measured 

values (4-50 mmHg) reported  in the literature [52]. The rate of transvascular leakage calculated using 

equation 3.15 and parameter values in Table 3.1 are shown for each vessel in Figure 3.15c. A net outward 

fluid flux is observed in intratumoural vessels, which is significantly higher than for vessels in the normal 

tissue region where the net fluid flux is close to zero. The tip vessels which represent the venous ends also 

have a low flux which is found to be negative, causing an inward velocity flux. This is due to low pressures 

at the venous ends and net inward flux for venous vessels is consistent with physiological behaviour in 

capillary beds.  A difference is observed in the transvascular flux between vessels at the tumour center 

and those at the peripheral region, where vessels in the central tumour region exhibit lower transvascular 

flux. 
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Figure 3.15: Maps of (a) the pressure distribution in the tumour vasculature, (b) on the exterior wall of the vessel and (c) the 

transvascular flux from vessels in the tumour. 
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To provide a 3D representation of the IFP in tumours, the tissue space was discretized in the orthogonal 

axis where pressure was determined at each point. Figure 3.16a shows the IFP distribution at a mid-height 

(z = 3000 μm) in the tumour tissue.  IFP at this location is highest in the central tumour region with values 

up to 5.5 mmHg which then drops rapidly moving away from the tumour center where a pressure of 

around 1.5 mmHg is calculated at the tumour surface. This IFP profile corresponds with experimental and 

modelling based studies in the literature and further justifies the validity of the model in capturing the 

flow dynamics in tumour tissue. The IFP drops in the bottom left corner of the tumour which can be 

attributed to poor vascularisation in this region and that vessels in this region are connected to the venous 

ends as seen in Figure 3.15a. Hence, the lower intravascular pressure limits the pressure in the interstitial 

space. Figure 3.16b shows the pressure distribution where points with pressure values below 4 mmHg are 

rendered transparent to highlight the regions where IFP is highest. This shows the IFP to be highest and 

mostly concentrated at the tumour center. 
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Figure 3.16: (a) Calculated interstitial pressure distribution in tumour tissue at half z-axis and x-axis (3000 μm). (b) 3D 

representation of IFP values above 4 mmHg from different angles. (Vessels are rendered blue for clarity).  
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3.3.3.1 Effect of vascular distribution and necrosis 

To understand the effect of heterogeneous vascular distribution on fluid flow, simulations were 

performed using the tumour vascular networks generated with varying degrees of central necrosis. 

Distributions of vascular density within the tumour volume have been presented in Figure 3.13 and 

discussed in section 3.3.1. Figure 3.17 shows the distribution of IFP on the surface of the vessels and the 

transvascular velocity from each vessel for the tumour models with 3% and 14% necrotic core volume.  

The average interstitial pressure on the surface of the vessels is lower in the 3% necrotic tumour and is 8 

mmHg. In the tumour with a higher degree of necrosis (14%) the average interstitial pressure on the vessel 

surface drops further to 7.68 mmHg. The transvascular velocity exhibits a similar trend to the non-necrotic 

case where flux is reduced in vessels close to the center of the tumour and in the venous ends.  

   Necrotic (3%) Necrotic (14%)  
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Figure 3.17: (a) Vessel surface pressure and (b) transvascular velocity in tumour geometries with different necrosis 
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Profiles of IFP at the mid-height (z = 3000 μm) in the tumour models are shown in Figure 3.18a. It is clear 

that the IFP profile is sensitive to the degree of necrosis, with a pronounced reduction in IFP in the 

avascular core in the 14% necrotic tumour. This is not so apparent in the tumour with 3% necrosis. Similar 

to Figure 3.16b, Figure 3.18b shows the 3D distribution of points above 4 mmHg to visualise the regions 

with the highest IFP. In the 3% necrotic tumour, high pressures are still seen in the tumour core, but with 

a slightly lower magnitude compared to the highest pressure found towards the upper periphery of the 

tumour. In the 14% necrotic tumour, IFP at the tumour center is significantly lower than the highest 

pressure distributed at the tumour periphery.  

     Necrotic (3%) Necrotic (14%)  
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Figure 3.18: Interstitial fluid pressure distribution in tumour model with 3% necrosis (left) and 14% necrosis (right). (a) Shows 
pressure distribution at z = 3000 µm (b) shows the interstitial pressure distribution for values above 4 mmHg. 

To further examine the heterogeneity in IFP, pressure profiles at the mid-plane along the y-axis are shown 

in Figure 3.19 for the three geometries. The necrotic tumour models with avascular cores exhibit peak IFP 

at the periphery rather than the center as observed in the non-necrotic tumour model. The pressure 

profile in non-necrotic tumour model is flatter in the central region (-0.1 to 0.1). The pressure gradient at 

the periphery is dependent on the degree of necrosis with a steeper gradient in the tumour with a larger 

avascular core showing that the distribution of the vasculature can play a significant role in tumour IFP.  

Non-necrotic   Necrotic (3%)   Necrotic (14%) 

   

Figure 3.19: Pressure profile along the y-axis at the mid-plane for different tumour geometries. 

3.3.3.2 Effect of vessel pruning and blind end removal 

The vascular networks examined so far feature a number of blind ends that may affect the pressure drop 

and flow in the vascular network. To quantify this effect, the tumour vascular geometries were modified 

by removing several blind ends to open up the pathways for flow. To achieve this, the blind ends were 

identified within the network, which were then either removed or assigned as venous end vessels 

depending on their order within the network. Likewise, an AV shunt was also placed in a region near the 

arterial vessels as shown in figure 3.14. The macroscopic properties of the tumour microvasculature are 

similar as seen in table 3.6. The average of the mean vascular segment transit times (VSTT) and percentage 

of hypo perfused vessels were calculated using equation 3.42 and compared for the original and pruned 

networks. As shown in Table 3.7, removing blind ends leads to a significant reduction in VSTT and the 

number of hypo perfused vessels; the latter is reduced by approximately 40-65%.  
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Table 3.6 Morphological parameters for tumour vasculature 

Parameter Units 
Original 
network 

Pruned blind ends 
network 

Vascular density - 𝑉𝑑  % 0.304 0.289 

Length density - 𝐿𝐷 mm/mm3 6.962 6.693 

Surface area to volume ratio (vascular) S/V mm2/mm3 153.559 154.468 

Maximum extravascular diffusion distance - 
R 

μm 213.833 218.160 

Mean vessel diameter μm 21.198 21.104 

Mean vessel length mm 0.192 0.193 

Table 3.7 Comparison of hypo perfusion parameters between the original and pruned vascular networks. 

 Original network Pruned blind ends 

Parameter 
Non-

necrotic 
Necrotic 

(3%) 
Necrotic 

(14%) 
Non-

necrotic 
Necrotic 

(3%) 
Necrotic 

(14%) 

Mean Vascular segment 
transit time (VSTT) 

39.591 48.975 29.714 22.136 16.372 13.311 

Hypo perfused vessels (%) 
VSTT > 4 seconds 

70.190 78.193 65.819 36.182 29.278 34.463 

Figure 3.20a shows the predicted intravascular pressure in the non-necrotic tumour after pruning. 

Compared to Figure 3.15a for the same tumour model before pruning, it is clear that pressure drop along 

vessels in the pruned vessel network is increased which can promote flow. Figure 3.20b shows that 

pressure at the vessel surface is reduced after pruning, especially in the tumour core where the maximum 

pressure drops from approximately 12 mmHg in the original network to 8.87 mmHg in the pruned 

network. Compared to Figure 3.15b, the pressure distribution tends to become more uniform after 

pruning, although differences between the tumour center and the periphery still exist. Pruning also leads 

to a noticeable reduction in transvascular flux from the vessels as shown in Figure 3.20c. The 

heterogenous intravascular pressure in the pruned network gives rise to a heterogeneous transvascular 

velocity from the vessels in the network. 
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 Figure 3.20: (a) Intravascular pressure (b) surface vessel pressure (c) transvascular leakage and interstitial pressure in the 

pruned non-necrotic tumour. 

Figure 3.20d shows the interstitial pressure distribution at the mid-plane (z = 3000 µm), which displays a 

similar profile to that in the original network (Figure 3.16a), but the maximum pressure within the tumour 

drops by approximately 1.5 mmHg. These findings suggest that although the vascular distribution and 

macroscopic parameters of the vasculature in the tumour tissue is almost similar to the original network, 

microscopic changes such as the removal of blinds and addition of AV shunts can significantly alter the 

flow dynamics in the vasculature and consequently in tissue space. The ability of normalizing vessel 

networks has been suggested as a target to enhance treatment [217, 218]. Chauhan et al. simulated vessel 

normalization by reducing the permeability in vessels and the heterogeneity in vessel permeability 
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showing that IFP was reduced significantly [171]. Sweeney et al. investigated vessel normalization by 

reducing the vessel diameters and uniform vascular hydraulic conductivity to find IFP was reduced [177].  

In this work, vascular normalization is simulated by reducing the abnormalities in the architecture of the 

tumour vasculature which showed similar findings in that the IFP was reduced.  

3.3.3.3 Effect of vascular remodelling 

To examine the effect of vessel adaption on fluid flow in tumours, the vessel remodelling framework 

discussed in section 3.2.5 is applied. To do this, the time over which the vascular network grows is 

discretized and the corresponding fluid flow is calculated. Shear stress and time are used as inputs to 

simulate changes in radius, pore size and wall thickness. The evolution of the vascular network with time 

is shown in Figure 3.21. 

t = 5 (8 days) t = 10 (16 days) 

  
t = 20 (32 days) t = 25 (40 days) 

  
Figure 3.21: Growth of vascular network with time. 
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Figure 3.22 shows the transvascular flux, vessel surface pressure and interstitial pressure distribution in 

the adaptive tumour network. The interstitial pressure at the surface of the vessel is seen to be 

significantly higher compared to the non-adaptive network, reaching a maximum of around 28 mmHg, 

which is still within the interstitial pressure values measured in tumours. The transvascular flux is non-

uniform and an inward flux is observed on most vessels in the tumour. Zero net flux can be seen on vessels 

that have fully remodelled and expanded to the maximum radius. The less mature vessels at tumour 

center have an inward flux of around 0.5-0.7 μm/s, whilst the new vessels towards the tip of the sprout 

have the highest inward flux. This is because more recently formed vessels have larger pores and hence 

the hydraulic conductivity of these vessels is higher. 

a 

 

b 

 

c 

 

d 

 
Figure 3.22: (a) Vessel surface interstitial pressure and (b) transvascular flux in adaptive tumour network. (c) Interstitial pressure 

distribution at z height = 3000 µm showing full pressure range and (d) pressure range from 10-12.5 mmHg to show 

heterogeneity. 
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Figure 3.22c shows that overall the IFP is significantly increased in the adaptive network with a maximum 

pressure of 12.4 mmHg, as newly formed vessels have a higher hydraulic conductivity when remodelling 

is considered. In Figure 3.22d, pressure distribution in the range of 10-12.5 mmHg is displayed to provide 

a clearer image of the heterogeneity in IFP distribution. When a uniform hydraulic conductivity was 

assumed as shown in Figure 3.16, high pressures are mostly concentrated in the central region. The 

inclusion of adaptive vessel hydraulic conductivity based on vessel maturity and flow dynamics in the 

tumour leads to a more heterogeneous IFP distribution even in the case of a well vascularized tumour as 

seen in figure 3.22. Chuan et al. [171] incorporated heterogeneous pore size distribution in their model. 

The vessels were assigned pore sizes assuming the unimodal distribution throughout the vasculature and 

hence did not explicitly incorporate the effect of fluid flow or vessel maturity on the permeability of the 

vessel. Their work showed similar findings where IFP was found to be heterogenous, however it could not 

be determined from their presented data whether this was due to the heterogeneity of the vessel pore 

size or the vascular distribution. In the model developed by Vavourakis et al. interstitial pressure was 

calculated incorporating heterogenous vessel permeability, however their model applied the 

homogenization technique reviewed in section 2.2 [74]. The tissue domain was divided into 3D finite 

elements with a minimum length of 70 µm where vascular properties where averaged within each tissue 

element. Vascular and interstitial flow were coupled using a vascular density term obtained from 

literature which did not represent the explicit morphology of the vascular network generated in their 

work. The interstitial pressure values in their work were described in 1D as a function of radial distance 

from the tumour center. The tumour IFP values in their work were approximately 8.5 mmHg which is 

comparable to the pressures found here, however the radial pressure profile in their tumour model was 

relatively uniform.  

3.4 Summary  

In this chapter a mathematical angiogenesis model is integrated with Pozrikidis’s fluid flow model to 

investigate the flow dynamics in tumour tissue. With the angiogenesis model it is possible to capture the 

explicit distribution and geometry of the tumour vasculature and its abnormal features including loops, 

blind ends and AV shunts. Pozrikidis’s fluid flow model has a distinct advantage of enabling vascular and 

interstitial flow to be strongly coupled through integration of flow in the vessels and interstitial space over 

the vessel surface, to provide approximations for fluid flow that are grounded in physical reality. The 

integrated angiogenesis and fluid flow model have been validated against data in literature and the effect 
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of various properties, including microvascular density distribution, necrosis, vascular architecture, and the 

effect of vascular remodelling have been examined.  

The integrated model was initially applied to a case of non-necrotic well-vascularized tumour using 

baseline values and a uniform hydraulic conductivity. The predicted flow parameters correlate well with 

data reported in the literature, showing similar IFP values and profiles. With regards to the effect of 

vascular distribution, it has been shown to have a significant effect on IFP, with avascular regions 

exhibiting lower pressures than the highly vascularized regions. In the presence of a necrotic core, the 

maximum interstitial pressure in the tumour decreases where increases in the degree of necrosis resulted 

in lower IFP values. In contrast to the profile observed in a non-necrotic tumour, which features a more 

uniform interstitial pressure with a rapid drop at the periphery, the presence of a necrotic core at the 

tumour center results in a lower interstitial pressure in the core region with the highest IFP in the 

peripheral regions. These changes in the pressure gradient can affect the interstitial fluid velocities which 

could have implications for drug transport in the interstitial space.  

As blind ends and AV shunts are common features of tumour vasculature, their effect on fluid flow has 

been investigated. The flow was analysed in two vascular networks with an almost identical vascular 

distribution and macroscopic parameters that differed only in the removal of blind ends and addition of 

AV shunts. The results showed that with the removal of several vessels that represent blind ends, a 

significant difference in flow within the vasculature and interstitial space was observed which resulted in 

a lower interstitial pressure. However, the intravascular pressure distribution and transvascular flux 

became more heterogenous which could have significant effects on the flow and transport within the 

network. This highlights the importance of not just incorporating the vascular distribution and 

macroscopic features of the vascular network but also the effect of intravascular flow dynamics on the 

predicted IFP.  

Finally, the influence of vascular remodelling is examined, which is incorporated by allowing the radius, 

porosity and wall thickness of each vessel to vary depending on the age and flow properties. Whilst most 

of the previous studies investigated fluid flow in tumours using a uniform vessel hydraulic conductivity, 

the new vascular remodelling model defines hydraulic conductivity values for each vessel. The results 

show that accounting for vascular remodelling causes a dramatic increase in interstitial pressure, which 

in turn results in a strong inward transvascular flux across most of the tumour network. The distribution 

of transvascular flux is non-uniform, with vessels in the periphery having a lower inward flux whilst well-
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perfused vessels having a net flux close to zero. The overall net inward flux could potentially limit the 

ability of therapeutic agents to permeate through the vessels and enter the interstitial space. The 

predicted IFP profile in the tissue could also pose an obstacle to the transport of therapeutics as its 

gradient at the edge of the tumour is steeper and the peaks in IFP are distributed heterogeneously within 

the tumour.  

Previous models that assume a uniform vascular distribution or treat the vasculature as a source term do 

not capture the effect of neighbouring vessels on each other, which could potentially influence flow on 

the macroscopic scale. The use of the boundary integral method to distribute sources and dipoles along 

the vessel surface provides greater accuracy as the topology and geometry of the vasculature are taken 

into account and the effect of each vessel segment on IFP at any point in space is considered. Using this 

method, work presented in this chapter has demonstrated the importance of considering not only the 

explicit nature of the tumour vasculature but also the intravascular flow properties when predicting and 

evaluating fluid flow in tumour tissue.  
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4 Influence of the tumour vasculature and fluid flow dynamics on drug 

transport and uptake 

4.1 Introduction 

Most forms of anti-cancer treatments involve the intravenous administration of therapeutic molecules or 

nanoparticles. The properties of the vasculature are likely to play an important role in the transport of 

therapeutics to tumours where the vasculature is known to be highly abnormal and heterogenous. These 

abnormalities in tumour vasculature can impair blood flow, resulting in an overall low flow with some 

vessels exhibiting stagnant flow [44]. This can lead to low influx of drug into the tissue and a heterogenous 

distribution due to larger extravascular diffusion distances. Importantly, this allows cancer cells in regions 

that are poorly supplied by vessels to evade treatment and survive [219]. More so, these properties can 

vary from patient to patient resulting in heterogenous response to treatment across patients. Whilst drug 

delivery is highly dependent on the tumour properties, it is also dependent on drug properties such as 

size, surface charge, pharmokinetics and pharmacodynamics. Treatment strategies including dosage and 

dosing schedule can also play a pivotal role in the transport and uptake of anti-cancer drugs. 

Understanding the interplay between these factors is crucial to develop optimized treatment strategies 

that increase the chances of patient survival. Drug transport occurs mainly through a combination of 

convection and diffusion and the relative importance of each mechanism can be quantified through the 

Peclet number which gives the ratio of fluid velocities to particle diffusivity and size. The mode of transport 

can impact penetration as diffusion is slow and limited to short distances whilst convection is more 

effective over larger length scales. Larger drugs have low diffusivities and favour convection whilst smaller 

drug have higher diffusivities but are hence to limited to short distances. In the vasculature, high blood 

flow velocities make convection the dominant mode of transport while in the tumour tissue space, high 

IFP causes flow to stagnant making diffusion a more dominant form of transport. 

 A large number of works have developed models attempting to predict the influence of various drug and 

tumour properties on the therapeutic effectiveness. Some of these studies have applied spatially averaged 

compartmental PK models to study the temporal drug concentration profile within different 

compartments such the vascular, tissue and cellular space and predict its effectiveness [179, 220]. Other 

models have been developed that simulate spatio-temporal distribution of the drug within the tumour, 

investigating the various tumour properties such as size, IFP profile and vessel permeability. However, 
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they treat the vasculature as a uniformly distributed source term where the microscopic effects of vessel 

morphology and flow dynamics are neglected. Given the aberrance of vasculature in tumours and the 

presence of avascular regions, steep spatial gradients in drug concentrations can occur and this can affect 

the overall effectiveness of drugs. Hence, providing an explicit representation of the tumour vasculature 

can give further insight into how drugs distribute in the tumour tissue. A limited number of studies have 

recognized this issue and developed models to predict the influence of the vasculature on drug 

distribution although the complexity of the vasculature was limited and key factors such as blood flow 

and intracellular uptake were neglected.  

In this chapter a mathematical model for solute transport is modified and coupled with the angiogenesis 

and fluid flow models described in Chapter 3 to investigate the transport, distribution and uptake of the 

anti-cancer drug doxorubicin in tumour tissues with explicit representation of the vasculature. The 

transport of the doxorubicin within the vascular space, its flux from the vessels, diffusion in the tissue 

space and uptake by cancer cells are incorporated. The model has been applied to idealized tumour 

geometry with different tumour properties such as size, and vascular network architecture. Additionally, 

the influence of drug dosage and infusion time are investigated to understand the interplay between 

administration regimes for chemotherapy drugs and distribution within the tumour tissue. 

4.2 Methods 

In this work, the angiogenesis and fluid flow models described in the previous chapter are coupled with a 

solute transport model developed by Secomb (2016) [188]. The solute transport model is extended to 

describe the transport and uptake of doxorubicin in tumours. In this section the methodology of the 

overall model is described. 

4.2.1 Tumour geometry 

The geometry of the tumour vasculature is generated using Anderson and Chaplains method [72] as 

described in section 3.2.1. The space surrounding the vasculature is assumed to be surrounded by 

uniformly distributed cells that make up a fraction of the tissue whilst the other fraction of the tissue 

space is assumed to be occupied by the interstitial fluid. Using this model, complex spatially dependent 

vascular networks can be generated as demonstrated in Chapter 3, including tumours with and without a 

necrotic core.  A vascular geometry is produced using equations 3.7, 3.8 and 3.9 which describes a tumour 

at the edge of the domain that secrets TAF. Fig. 4.1a-c shows the initial distribution of TAF, fibronectin 
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and endothelial cells. Fig 4.1d shows the formed vascular network in an 800 x 800 x 400 µm tissue volume. 

The vessels are divided into short cylindrical segments with defined radius and length that are assumed 

to be straight, rigid and permeable. The vascular network generated captures many features found in 

tumour vasculature including excessive branching, high tortuosity and heterogenous distribution.  

a 

 

b 

 
c 

 

d 

 
Figure 4.1: (a) Initial TAF and (b) Fibronectin concentration profiles determined using equation 3.7 and 3.8. (c) initial endothelial 

density which can be described as three clusters sprouting from parent vessel at x = 0. (d) Vascular network generated. 

4.2.2 Drug transport model 

4.2.2.1 Drug distribution in vasculature: 

In tumour vessels, typical blood flow velocities U and vessel length scales L are about 1 mm s-1 and 0.3 

mm respectively [204]. For a typical drug with diffusivity D of the order of 10-6 cm2 s-1,  the Peclet number 

which defines the relative magnitude of convection to diffusion is found to be   3̴000 [221]. Hence, drug 

transport within tumour vessels is assumed to occur mainly through convection and is given by  
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𝐴𝑣
𝜕𝑐𝑣
𝜕𝑡

+ 𝑄
𝜕𝑐𝑣
𝜕𝑠

= −𝑞𝑣 
(4.1) 

Where Av is the vessel cross sectional area, cv is drug concentration in the vasculature, Q is the blood flow 

rate, s is the distance along the vessel segment and qv is the rate of drug diffusing through the vessel walls 

per unit length. The transport of drug across the vessel wall to the tissue space is dependent on the 

permeability of the wall to the drug, P and the concentration gradient across the wall. The transvascular 

flux per unit length in a vessel of length L is given by 

 𝑞𝑣 = 𝐿 𝑃(𝑐𝑣 − 𝑐𝑠) (4.2) 

Where 𝑐𝑠 is the extravascular drug concentration on the surface of the vessel. 

4.2.2.2 Interstitial drug transport: 

In the interstitial space, interstitial fluid velocities are low and are on the order of <1 μm s-1 due to high 

interstitial pressure caused by leaky vessels. With typical extravascular diffusion distances of 100 μm, 

Peclet numbers are usually <1 for small drugs [221]. Therefore, drug transport in the tissue space can be 

assumed to be dominated by diffusion and described as follows 

 𝜕𝑐𝑒
𝜕𝑡

− 𝐷𝑒∇
2𝑐𝑒 = 𝑅(𝑐𝑒 ) 

(4.3) 

Where 𝑐𝑒 is the extracellular concentration in the interstitial space, De is the isotropic diffusion coefficient, 

and R is a function describing the rate of uptake and efflux by cells. 

 

4.2.2.3 Intracellular uptake and efflux 

Drug uptake by cancer cells depends on the chemotherapy drug and the type of cancer cells. In this study 

doxorubicin is adopted as the chemotherapy drug and it has been shown that its uptake by cancer cells is 

strongly non-linear [222]. At a spatial point, the transport of drug across the cell membrane varies with 

the concentration in the extracellular space. Efflux for doxorubicin is found to occur mostly through 

passive diffusion and is a function of the intracellular concentration, ci. Transmembrane transport 

including uptake, δ and efflux ω can be described by Michaelis-Menten kinetics as follows [223] 
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δ =

𝑉𝑚𝑎𝑥𝑐𝑒
𝑐𝑒 + 𝐾1𝜑

 
(4.4) 

 
ω =

𝑉𝑚𝑎𝑥𝑐𝑖
𝑐𝑖 + 𝐾2

 
(4.5) 

Where Vmax is the maximum rate of transport across the membrane, 𝜑 is the fraction of extracellular space 

in the tissue and K1 and K2 are the Michaelis constants for half-maximal transport as determined by Kerr 

et al. [222]. The intracellular drug concentration for cells is described exclusively as the difference 

between uptake and efflux.  

 𝑑𝑐𝑖
𝑑𝑡

= 𝛿 − 𝜔 
(4.6) 

Equation 4.3 describing the extracellular space concentration can then be given reformulated to 

incorporate the effect of uptake and efflux 

 𝜕𝑐𝑒
𝜕𝑡

= 𝐷𝑒∇
2𝑐𝑒 − 𝛿 + 𝜔 

(4.7) 

Doxorubicin in the plasma and interstitial fluid binds extensively to proteins such as albumin. The bound 

formulation of doxorubicin with albumin exhibits different transport properties to its free form including 

lower permeability to the vessels and slower diffusion rates. Additionally, only free doxorubicin is able to 

cross the membrane of the cells therefore binding is expected to reduce the amount of drug available to 

enter the cells and consequently induce therapeutic effect on the cell. Greene et al. found that 

approximately 74-82% of doxorubicin is bound regardless of Doxorubicin and albumin concentrations 

[224]. Binding and dissociation of doxorubicin can be simply described by first order kinetics, however the 

rate at which these occur are fast relative to other processes such as diffusion and uptake, which would 

require a reduced time step and increase the computational burden. We neglect binding in this work as it 

would only be expected to result in a lower free drug concentration in the vascular and interstitial space, 

whilst not affecting the qualitative results obtained.  

4.2.3 Model parameters 

4.2.3.1 Dosage 

For doxorubicin, the maximum lifetime dose a patient can receive is limited by the cardiotoxicity and 

ranges from 450 mg/m2 to 550 mg/m2 [225]. The total dose D in mg is dependent on the body surface 
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area (BSA) of the patient which will vary depending on age and gender. To understand the effect of the 

vasculature and drug properties on its transport and uptake we take a BSA of 1.79 m2 averaged from 3619 

cancer patients treated in UK in 2005 [226]. Doxorubicin is administered in cycles separated by 2-3 weeks, 

hence the drug remaining from the previous cycle is not expected to have an effect the next cycle. During 

each cycle 60-75 mg/m2 is usually administered, however several studies have looked at the development 

of high dose chemotherapy allowing for 110 mg/m2 to be administered over several cycles [227-229]. 

Using the BSA value chosen in this work, the total dose can range from 100-200 mg which are used within 

this work. 

4.2.3.2 Drug injection kinetics  

After injection the Doxorubicin is assumed to rapidly and uniformly distribute within the body’s blood 

vessels through convection. The plasma concentration for a bolus injection are modelled as an exponential 

decaying function given by  

 𝑐𝑣(𝑡) = 𝐷𝐴𝑒
−𝛼𝑡 (4.8) 

Where D is the dose, A is the inverse volume of distribution, and 𝛼 is time constant for Doxorubicin in 

plasma. Robert et al. determined the parameters A and  𝛼 for a population of breast cancer patients [230]. 

For continuous infusion of time duration T they adopted a three-compartment model to describe plasma 

concentration through a tri-exponential decay function as follows  
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(𝑒𝛾𝑇 − 1)𝑒−𝛾𝑡] , 𝑡 ≥ 𝑇

 

 

 

(4.9) 

Where A, B, and C are compartment parameters and 𝛼, 𝛽 and 𝛾 are time constant parameters in each 

compartment. For a bolus injection the terms B, C, 𝛽 and 𝛾 are neglected as their compartments 

represent clearance with much slower rates of elimination. The parameters used in the drug 

transport model to describe drug injection kinetics, distribution and uptake within the tumour 

are summarised in table 4.1  
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Table 4.1 Drug transport parameters 

Parameter Units Doxorubicin Reference  

Dosage D mg 100-200 [227-229] 

Diffusivity De cm2/s 2 × 10−6 [231] 

Permeability to vessels cm/s 2.744 × 10−4 [232] 

Molecular weight g/mol 543.52 [222, 233] 

Rate of transmembrane transport Vmax μM/s 0.086 [222] 

Michaelis constant for transmembrane constant  Ke μM 0.403 [222] 

Michaelis constant for transmembrane constant  Ki μM 25.21 [222] 

Inverse volume of distribution in plasma for 

compartment 1 A 

/l 0.13 [230] 

Inverse volume of distribution in plasma for 

compartment 2 B 

/l 2.49 × 10−3 [230] 

Inverse volume of distribution in plasma or 

compartment 3 C 

/l 5.52 × 10−4 [230] 

Time constant for doxorubicin in plasma for 

compartment 1 α 

/s 2.432 × 10−3 [230] 

Time constant for doxorubicin in plasma for 

compartment 2 β 

/s 2.83 × 10−4 [230] 

Time constant for doxorubicin in plasma for 

compartment 3 γ 

/s 1.18 × 10−5 [230] 

 

4.2.4 Numerical Method for drug transport in tumour tissue 

To solve the spatial profile of doxorubicin in the tumour geometry, the vasculature is represented as 

cylindrical segments where each segment j was subdivided into Nv number of cylindrical subsegments 𝑖 =

1,2,3,… . . 𝑁𝑣. The tissue space was divided into Nt number of cubes composed of a fraction 𝜑 representing 

the extracellular space and the cells occupying (1 −  𝜑) of the tissue space. The extracellular and 

intracellular concentrations (ce and ci ) are averaged over the volume of the cubes in the tissue space, 

whilst cv  is averaged over the vessel segment. The time scales on which drug transport occurs are 

significantly faster than the processes that can affect fluid flow (such as vessel adaption and vascular 

remodelling), hence the fluid flow equations are solved first using the method described in Chapter 3. In 

the drug transport model time is discretized into n subintervals for 𝑘 = 1,2,3,… . . , 𝑛 where 𝑡0 and 𝑡𝑛 are 

initial and final time points respectively. Initially at 𝑡0 the drug concentrations at the arterial points are 

solved using the plasma kinetic equations 4.8 or 4.9 depending on the administration mode. The fluid flow 

solution is used to define flow rate within the vessels in the drug transport model. The distribution of the 

drug within the tumour vasculature is resolved by integrating equation 4.1 along each flow pathway where 
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intravascular concentration is determined as a function of the vascular concentration at the preceding 

time point and source strength from the vessels.  

Secomb (2016) [188] formulated a solution for the vascular concentration of a solute in vessel segment i 

at time point k which can be applied to model the vascular concentration of doxorubicin as follows 

 

𝑐𝑣
𝑖𝑘 = ∑ 𝛾𝑖𝑗𝑐𝑏

𝑗𝑘

𝑁𝑏

𝑗=1
inflow

+∑𝛽𝑖𝑗𝑐𝑣
𝑗𝑘−1

𝑁𝑣

𝑗=1

−∑
𝛼𝑖𝑗𝑞𝑣

𝑗𝑘
∆𝑡

𝑉𝑗

𝑁𝑣

𝑗=1

       for  𝑖 = 1,2,3…𝑁𝑣 

(4.10) 

Where 𝑐𝑣
𝑖𝑘is the average vascular concentration of doxorubicin in node i at time point k, Vj is volume of 

segment j and 𝛾𝑖𝑗, 𝛽𝑖𝑗and 𝛼𝑖𝑗  are convective coefficients. Equation 4.10 describes the vascular 

concentration in segment i at the end of each time step. To compute the amount of drug being drained 

by the venous ends, the following equation is used  

 

𝑐𝑏
𝑖𝑘 = ∑ 𝜉𝑖𝑗𝑐𝑏

𝑗𝑘

𝑁𝑏

𝑗=1
inflow

+∑𝜔𝑖𝑗𝑐𝑣
𝑗𝑘−1

𝑁𝑣

𝑗=1

−∑
𝜍𝑖𝑗𝑞𝑣

𝑗𝑘
∆𝑡

𝑉𝑗

𝑁𝑣

𝑗=1

       for  𝑖 = 1,2,3…𝑁𝑏 

(4.11) 

Where 𝑐𝑏
𝑖𝑘 is the concentration of doxorubicin reaching venous node i during each time step k and 

𝜉𝑖𝑗, 𝜔𝑖𝑗and 𝜍𝑖𝑗 are convective coefficients. The convective coefficients represent a set of matrices that are 

dependent on the network topology and the blood velocity distributions and are used as described in 

Secomb (2016).  

Convective transport of the drug within the vasculature and diffusive transport in the interstitial space are 

coupled by implementing Secomb’s Green’s function approach for time-dependent solute transport [188].  

Diffusion in the interstitial space is described by convoluting the concentration field at the beginning of 

the time step with the Green’s function for time dependent diffusion equation which allows the solute to 

move across multiple spatial grid points in a single time step.  Given the complexity of the vasculature and 

steep spatial gradients in drug concentration known to occur in tumours, the method provides an efficient 

way to incorporate the microscopic details of drug transport in tumours whilst the implicit nature of the 

method places no restriction on the time or spatial step. This allows for longer simulations that provide 

an efficient means to visualize drug transport over longer time scales.  
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The solution developed by Secomb for time-dependent solute distribution in the tissue space is modified 

to incorporate cellular uptake and efflux. The concentration of doxorubicin in the extracellular space is 

then given as  

𝑐𝑒
𝑖𝑘 =∑𝑉𝑡𝐺𝑡𝑡

𝑖𝑗
(𝑐𝑒
𝑖𝑘−1 − 𝐺0

𝑘−1)

𝑁𝑡

𝑗=1

+∑�̅�𝑡𝑡
𝑖𝑗
[𝑉𝑡 (−

𝑉𝑚𝑎𝑥𝑐�̅�
𝑖𝑘

𝑐�̅�
𝑖𝑘 + 𝐾1

+
𝑉𝑚𝑎𝑥𝑐�̅�

𝑖𝑘

𝑐�̅�
𝑖𝑘 + 𝐾2

) − 𝑉𝑡(𝐺0
𝑘 − 𝐺0

𝑘−1)/Δ𝑡)]

𝑁𝑡

𝑗=1

+∑�̅�𝑡𝑣
𝑖𝑗
𝑞𝑣
𝑗𝑘

𝑁

𝑗=1

+ 𝐺0
𝑘       for  𝑖 = 1,2,3…𝑁𝑡  

(4.12) 

Where 

𝑐�̅�
𝑖𝑘 =

𝑐𝑒
𝑖𝑘 + 𝑐𝑒

𝑖𝑘−1

2
 𝑐�̅�

𝑖𝑘 =
𝑐𝑖
𝑖𝑘 + 𝑐𝑖

𝑖𝑘−1

2
 

(4.13) 

The concentration on the surface of the vessel is averaged over the surface of vessel segment i and defined 

as  

𝑐𝑠
𝑖𝑘 =∑𝑉𝑡𝐺𝑣𝑡

𝑖𝑗
(𝑐𝑒
𝑖𝑘−1 − 𝐺0

𝑘−1)

𝑁𝑡

𝑗=1

+∑�̅�𝑣𝑡
𝑖𝑗
[𝑉𝑡 (−

𝑉𝑚𝑎𝑥𝑐�̅�
𝑖𝑘

𝑐�̅�
𝑖𝑘 + 𝐾1

+
𝑉𝑚𝑎𝑥𝑐�̅�

𝑖𝑘

𝑐�̅�
𝑖𝑘 +𝐾2

) − 𝑉𝑡(𝐺0
𝑘 − 𝐺0

𝑘−1)/Δ𝑡)]

𝑁𝑡

𝑗=1

+∑�̅�𝑣𝑣
𝑖𝑗
𝑞𝑣
𝑗𝑘

𝑁

𝑗=1

+ 𝐺0
𝑘      for  𝑖 = 1,2,3…𝑁𝑣 

(4.14) 

Where 𝑐𝑒
𝑖𝑘 is average concentration of doxorubicin in the extracellular space at tissue node i at time step 

k and 𝑐𝑠
𝑖𝑘 is average concentration of doxorubicin on the surface of vessel i at time point k. 𝑉𝑡 is the volume 

to tissue cube and 𝐺𝑡𝑡
𝑖𝑗

, 𝐺𝑣𝑡
𝑖𝑗

, �̅�𝑡𝑡
𝑖𝑗

, �̅�𝑡𝑣
𝑖𝑗

, �̅�𝑣𝑡
𝑖𝑗

and �̅�𝑣𝑣
𝑖𝑗

 represent the diffusive interaction matrices obtained 

from Secomb’s work where they are described in more detail [188]. In summary these matrices represent 

the tissue-tissue and vascular-tissue interactions that could influence drug concentration over the interval 

Δt and as a result of the preceding time point tk-1. The average intracellular concentration in tissue region 

i is simply given as  

𝑐𝑖
𝑖𝑘 = 𝑐𝑖

𝑖𝑘−1 + 𝑉𝑡 (
𝑉𝑚𝑎𝑥𝑐�̅�

𝑖𝑘

𝑐�̅�
𝑖𝑘 + 𝐾1

−
𝑉𝑚𝑎𝑥𝑐�̅�

𝑖𝑘

𝑐�̅�
𝑖𝑘 +𝐾2

)      for  𝑖 = 1,2,3…𝑁𝑡 
(4.15) 
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The terms in equations 4.12, 4.14 and 4.15 representing the uptake and efflux of doxorubicin can denoted 

as source/sink terms in the extravascular space as follows 

𝑞𝑒 = 𝑉𝑡 (−
𝑉𝑚𝑎𝑥𝑐�̅�

𝑖𝑘

𝑐�̅�
𝑖𝑘 + 𝐾1

+
𝑉𝑚𝑎𝑥𝑐�̅�

𝑖𝑘

𝑐�̅�
𝑖𝑘 + 𝐾2

) 

𝑞𝑖 = 𝑉𝑡 (
𝑉𝑚𝑎𝑥𝑐�̅�

𝑖𝑘

𝑐�̅�
𝑖𝑘 + 𝐾1

−
𝑉𝑚𝑎𝑥𝑐�̅�

𝑖𝑘

𝑐�̅�
𝑖𝑘 + 𝐾2

) 

  (4.16) 

The non-linearity of doxorubicin uptake can cause instabilities within the numerical method and increase 

the time required to achieve convergence. Hence to control the stability of the system, under relaxation 

methods are applied where the uptake and efflux functions are multiplied by an under-relaxation factor 

as follows 

 𝑞𝑒
𝑛 = 𝑓 ∙ 𝑞𝑒

𝑛(1 − 𝑓) ∙ 𝑞𝑒
𝑛−1 

𝑞𝑖
𝑛 = 𝑓 ∙ 𝑞𝑖

𝑛(1 − 𝑓) ∙ 𝑞𝑖
𝑛−1 

(4.17) 

Where n is the iteration step and 𝑓 is the under-relaxation factor which is set to 0.7 in this work. The 

tranvascular flux of the drug is described by the vessel source term at vessel segment i and time step k as 

 𝑞𝑣
𝑖𝑘 = 𝑙𝑖𝑃𝑖[𝑓

−1(𝑐𝑣
𝑖𝑘) − 𝑐𝑠

𝑖𝑘] (4.18) 

Where 𝑙𝑖 is the length of segment i.  

Secombs method coupled intravascular concentration and the concentration on the surface segment by 

combining equations 4.18 into 4.10 and 4.14. From this point this work follows Secomb’s iterative 

solution to the drug transport problem within the tumour tissue.  

4.2.5 Solution process 

The tumour geometry used is generated as described in section 4.2.1. Following the generation of the 

tumour model, blood flow within the vessels is resolved using the fluid flow model described in chapter 3 

which couples the vascular and interstitial flow. The flow in the vasculature is used as an input for the 

drug transport model along with the network topology (vessel radius, length and connectivity). Time 

parameters are defined that include the time step and number of steps. Drug properties are defined 

including the number of including its diffusivity and uptake kinetics. The vascular network and tissue space 

are discretized, and the convective and diffusive matrices are calculated. Using the Pharmacokinetic 

equations 4.8 and 4.9, the drug concentration at the inlet arterial points of the network are defined at the 
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initial time point. The transport of the drug within the vascular network and its distribution in the 

interstitial space and uptake by the cells are calculated at each time point using Secomb’s solution to the 

Green’s function time-dependent solute transport problem and implementing the equations 4.10-4.18. 

The workflow of this process is given in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The algorithm is solved using a modified code based on Secomb’s CUDA C++ code [188] which allows for 

parallel computing on Graphical processing units (GPUs). When compared to solving the system using 

traditional C++ codes on CPUs, the CUDA code processed on GPUs greatly reduces the time required for 

each simulation and allows for more detailed analysis. 

4.2.6 Time step and mesh resolution optimization 

Choosing the appropriate time and spatial step is necessary to ensure that the simulation is stable and 

able to provide consistent reliable data. For explicit methods, time and spatial steps are limited by the 

courant number as follows 

Initialise endothelial n, TAF 

c, and fibronectin f 

Solve continuum 

distribution of n, c and f. 

Solve discrete form of 

continuum equations to 

track endothelial cell 

movement  

Regulate geometry 

assigning vessel nodes, 
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Calculated flowrate in each 
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Figure 4.2: Schematic of work flow to solve drug transport and uptake in tumour model 
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𝐶𝐿 ≡

𝐷∆𝑡

(∆𝑥)2
≤
1

2
 

(4.19) 

The implicit nature of Secomb’s Green’s function method is not subject to this limitation; hence results 

obtained with varying time steps and mesh resolution were analysed independently. The mean spatial 

extracellular and intracellular concentrations at each time point were calculated in the simulations. When 

examining the effect of time step, concentration values were found to converge and become consistent 

at time steps in the range of 3-15 seconds (Fig 4.3). Above this range, the simulation became unstable 

whilst lower values in the range of 0.5-2 seconds resulted in divergence of concentration values. Secomb 

found a similar trend in their work where smaller time steps resulted in a divergence of washout rate 

values in their simulation. A plausible explanation is that smaller time steps may lead to numerical 

diffusion where diffusive spread of the drug is artificially increased in the tissue due to averaging of drug 

concentrations over finite tissue regions. This was observed in the simulations where at all time points, 

the total amount of drug in the tissue space was similar for all time steps, however at smaller time steps 

the drug was found to be more homogenously distributed within the tissue leading to a low mean spatial 

concentration as a result of an artificial increase in diffusivity.  Consequently, a time step of 10 seconds 

was chosen as this was within the convergent range for drug concentration values within the tissue and it 

was a good compromise between computational demand and accuracy.  

 

Figure 4.3: Mean spatial extracellular concentrations for timesteps ranging from 0.5-15 seconds 

 

An analysis of the effect of mesh showed the model was less sensitive to the mesh resolution relative to 

the time step (Fig. 4.4).  Increasing the number of nodes in the tissue space led to an increase in mean 
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concentration up to a certain extent where negligible changes in concentration occurred between tissues 

divided into 4000 points and those with 32000 points. This highlights that convergence can be achieved 

with 4000 points where the spatial step is 35 μm. Hence, the tumour tissue was discretized using this 

spatial step. It is worth noting that increasing the node points from 4000 to 8125 resulted an increase in 

computational time from approximately 3.5 hrs to 12.8 hrs on the HPC. 

 
Figure 4.4: Mean spatial extracellular concentrations for different mesh sizes. 

 

4.3 Results and discussion 

4.3.1 Tumour geometry and blood flow 

Two model geometries are used in this chapter: the newly created model describing a tumour at the edge 

of the domain as shown in Figure 4.1 and one of the models with a necrotic core (3%) presented in Chapter 

3, which will be referred to as Model 1 and Model 2 respectively, hereafter. Before performing drug 

transport analysis on these geometries, their morphological parameters and basic hemodynamic 

parameters, as defined in Chapter 3, are evaluated and compared. Tables 4.2 and 4.3 show a summary of 

the calculated parameters and the corresponding data in the literature. Comparisons suggest that all the 

evaluated parameters are within the range previously reported based on imaged tumours. 
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Table 4.2 Morphological parameters for different geometries 

Parameter Units Model 

1 

 

Model 

2 

Literature 

data  

Reference  

Tumour tissue volume mm3 0.256 1.331   

Vascular density - 𝑉𝑑 % 0.601 0.205 0.15-1.25 [210-212] 

Length density - 𝐿𝐷 mm/mm3 56.291 29.410 10-72 [89] 

Surface area to volume ratio (vascular) 

S/V 

mm2/mm3 322.52 409.391 30-250 [38] 

Maximum extravascular diffusion 

distance - R 

μm 75.198 104.035 5-225 [28, 36] 

Mean vessel diameter μm 10.805 9.102 0.06-0.3 [36, 214] 

Mean vessel length mm 0.036 0.065   

 

Table 4.3 Hemodynamic properties of the tumour vasculature and comparison with literature 

Parameter Units Model 1 Model 2 Literature data  Reference  

Perfusion  ml/g min 0.422 0.391 <2 [234] 

Mean velocity mm/s 0.654 1.378 0.1-25 [204, 215] 

Shear stress Pa 1.733 4.423 1-10 [169, 222, 233] 

 

4.3.2 Drug distribution 

Using the optimised time step and mesh resolution that ensures a convergent solution, the transport of 

doxorubicin in Model 1 following a bolus injection of 100 mg was simulated first. For qualitative analysis 

of the distribution of doxorubicin, drug concentrations in the vascular, extracellular and intracellular space 

were normalised relative to the maximum concentration reached within each compartment. Figure 4.5 

shows the variation of intravascular drug concentration with time. At 10 seconds after injection, drug 

concentration is the highest near the feeding parent vessels with a large gradient along the network. As 

time is advanced (at 3 mins), drug concentration remains low in the distal segments of the vessel network 

whilst concentration levels in the proximal segments start to fall and after 15 mins, almost all the drug in 

the vasculature has either been cleared or entered the tumour tissue. The steep gradients in the 

concentration seem to occur in regions where there is excessive tortuosity and branching as seen in the 

upper left region of the tumour geometry (X>400 μm and Y>400 μm). 
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 Vertical view  

 
 

 

 

  

 
 

Figure 4.5: Normalised intravascular concentration of doxorubicin at different time points for a bolus injection of 100mg (Model 

1). Right side shows vertical view looking down z-axis. 

Figures 4.6 and 4.7 show spatial distributions of doxorubicin in the extracellular and intercellular space 

respecitively, where concentration maps at different transverse planes in the x, y and z axis are displayed 

to provide a better visualisation of drug distribution in a 3D space. For the coloring scheme, a ramp up 

approach to was used to set the transparency, where transparency is increased as the concentration value 

becomes smaller. Hence, regions where there is no colour filling correspond to concentration values near 
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zero. Figure 4.6 shows that doxorubicin diffuses through the vessel wall and is taken up rapidly by the 

tumour tissue where peak extracellular concentrations are almost achieved within 100 seconds of 

infusion. The drug in the extracellular space is seen to be concentrated in regions near well perfused 

vessels whilst regions near poorly perfused vessels with low intravascular concentration showed low 

extracellular concentrations. In regions with well perfused vessels, a steep drop in concentration is 

observed corresonding to distance from the vessels. After 5 mins, the extracellular concentration maps 

exhibit similar features where drug is present mostly in regions near the well perfused vessel, but the 

concentration levels are much lower compared to the maximum concentration achieved in the 

extracellular space. This is attributed to the high uptake rate of doxorubicin by the cancer cells in regions 

near the vessels and the lack of supply from the vascular space as the drug is cleared from the plasma. 

The concentration of doxorubicin in the extracellular space becomes almost uniform and very low only 15 

mins after injection. An interesting observation from the snapshots of the extracellular concentration map 

is that drug distribution is not only dependent on the distance away from blood vessels, but also the 

microvascular morphology and vascular density. For example, the relative low drug concentration in the 

region (X>400 μm and Y>400 μm) is attributed to excessive branching and higher vessel tortuosity which 

impairs flow rate and consequently the amount of drug in the vasculature. 

The intracellular concentration maps (Figure 4.7) show a similar spatial profile where regions nearest to 

the well perfused vessels have higher concentrations. Within 10 mins of bolus injection, a large amount 

of the drug in the extracellular space has been taken up by the cancer cells. At the 30-minute mark, the 

intracellular concentration approximately reaches its peak value with heterogeneities and steep spatial 

gradients present. These gradients become less apparent at the 1-hour mark with concentration 

becoming more uniform, however, the maximum concentration is almost half of the level at the 30-

minute mark. After 3 hours the intracellular concentration has dropped significantly reaching 30-40% of 

its maximum value. This suggests that cancer cells nearest to blood vessels will be exposed to doxorubicin 

at high concentrations for a brief 30 mins. As described in equations 4.4 and 4.5, intracellular uptake rate 

is dependent on the extracellular and intracellular concentrations. The high ratio of intracellular to 

extracellular concentration in regions near blood vessels at 30 mins increases the efflux of the drug from 

the cells which then diffuses across the tissue before it is taken up in regions with low intracellular 

concentration. Although the spatial intracellular concentration distribution reaches a uniform state 3 

hours after bolus injection, cells further away from blood vessels and in regions with high vessel tortuosity 

are only exposed to a fraction of the maximum concentration found in cells near the vessels. This would 

be expected to contribute to a heterogeneity in the cell kill rate within the tissue space, allowing for cells 
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further away from the vessels or those that are in regions with tortuous vessels in poorly perfused regions 

to escape treatment.  

 

 

Vertical view 

 

 

  

  

Figure 4.6: Normalised extracellular concentration of doxorubicin at various time points for a bolus injection of 100mg (Model 
1). 
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                  Vertical view 

 

  

  

  

  

Figure 4.7: Intracellular concentration of doxorubicin at various time points for a bolus injection of 100mg 
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4.3.3 Effect of vascular properties 

To provide a picture of the effect of vascular network properties on the delivery of doxorubicin to 

intracellular targets, simulations were performed for networks with different properties and architecture. 

First, a model is generated with the same vascular network architecture as in Model 1 but with a larger 

tumour volume.  The effect is that the extravascular diffusion distance and avascularity of the tumour 

would be higher. In the original Model 1, the maximum extravascular diffusion distance, R, is 75.2 μm and 

the vascular density is 0.60 %. Konerding et al. studied the vascular architecture of four different cancer 

cell lines transplanted in mice and found that the intercapillary distance can be as large as approximately 

215 μm [38]. Hence, Model 1 was enlarged in an attempt to replicate these features, and the enlarged 

model has an R value of 150.4 μm and a vascular density of 0.15 %.  

Figures 4.8 and 4.9 show the spatial concentration maps of doxorubicin in the extracellular and 

intracellular space in the enlarged model respectively. In order to qualitatively analyse the effects of inter 

capillary distance and vascular density, the concentration values are normalized by the respective peak 

concentration. Comparisons of Figure 4.6 and 4.8 show that larger extravascular diffusion distances lead 

to an overall low peak concentration in the extracellular space with certain regions having no drug 

exposure.  Similarly, the intracellular concentration maps in Figure 4.9 exhibit higher heterogeneities as a 

result of increased extravascular diffusion distance. There are more regions in the tissue space having 

extremely low intracellular concentration and it takes longer time to achieve a uniform distribution, 

however at this point the concentration values have dropped significantly to <10% of the peak 

intracellular concentration reached in regions near the vessels at earlier time points. This is expected to 

limit the overall therapeutic effect of doxorubicin for cells near the vessels and with cells further away 

being able to escape treatment. 
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                 Vertical view 

 

 

  

  

Figure 4.8: Normalised extracellular concentration of doxorubicin at various time points for a bolus injection of 100mg (enlarged 

Model 1). 
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                 Vertical view 

 

 

  

  

  

 

Figure 4.9: Normalised intracellular concentration of doxorubicin at various time points for a bolus injection of 100mg (enlarged 

Model 1). 
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To gain some insight into the effect of vascular architecture and heterogeneity on drug transport and 

uptake, simulations were performed on a tumour model with a different vascular network (referred to as 

Model 2 hereafter). A key feature of this network is the high vascularity at the tumour periphery and the 

presence of an avascular necrotic core at the tumour center. This characteristic of the vasculature has 

been observed in several tumours types where vessels are formed mostly in the peripheral tumour regions 

with vessels in the core being sparse [235, 236]. Morphological and hemodynamic properties of Model 2 

are summarized in tables 4.2 and 4.3. Model 2 exhibits lower vascular density and larger maximum 

extravascular diffusion distance compared to Model 1. Figures 4.10 and 4.11 show the results for vascular 

extracellular and intracellular spatial distributions of doxorubicin in Model 2 with concentrations 

normalized with respect to the corresponding peak concentration.  

a 

 

 

 

b                   

 
 

 

 
 

  

  
Figure 4.10: Normalised vascular (a) and extracellular (b) concentration of doxorubicin at various time points for a bolus 

injection of 100mg (Model 2). 
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Figure 4.11: Normalised intracellular concentration of doxorubicin at various time points for a bolus injection of 100mg (Model 
2). (b) shows distribution points for concentration larger than 0.5 of normalised concentration. 
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To quantitatively compare and analyse the spatial heterogeneity of extracellular and intracellular drug 

concentration between the different geometries, the non-uniformity factor (NUN) is evaluated which is 

defined as 

 
NUN =

∑|𝑐𝑖 − 𝑐𝑎𝑣𝑔| 𝑉
𝑖

𝑐𝑎𝑣𝑔𝑉𝑡𝑢𝑚𝑜𝑟
 

(4.20) 

Where cavg is the average concentration in the whole tissue, Vtumour is the volume of the tumour, ci is the 

concentration of the drug at tissue node i and Vi
 is the volume of tissue node i. Figure 4.12 shows the 

calculated NUN values in extracellular and intracellular concentrations for the three models examined in 

this chapter. Compared to the original Model 1, heterogeneities in extracellular and intracellular 

concentrations are significantly higher in Model 2 and the enlarged Model 1. This greater heterogeneity 

was apparent for longer time periods, as it required 6 hours for the NUN factor in both geometries to 

reach values comparable with the original Model 1. The exposure of cells in the tissue space to non-

uniform levels of doxorubicin for such a considerable time would be likely to result in different levels of 

cell killing within the tissue space. Additionally, once the concentration becomes more uniform after 6 

hours, the level of intracellular doxorubicin is too low to exert its effect on cell killing.  

 

 

Figure 4.12: Variations of non-uniformity factor in extracellular (top) and intracellular (bottom) concentrations in different 

tumour models for a bolus dose of 100 mg. 
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4.3.4 Effect of dosage 

In anti-cancer therapy, doxorubicin can be administered at different doses within a set limit. The effect of 

higher doses on intracellular drug distribution is examined. Bolus doses of 200 mg and 100 mg doxorubicin 

are chosen and applied to Model 1 first. Figure 4.13 shows the comparison of intracellular concentration 

maps for Model 1 with values normalized to the same peak value which is the highest concentration 

achieved in both cases. It is clear that increasing the dose resulted in a higher overall concentration in the 

intracellular space as expected. Regions near the vessels achieved higher concentrations than those 

further away from the vessels and spatial gradients are apparent. However, heterogeneities in 

concentration decreased in the case where a higher dose was injected. The higher peak concentrations 

are expected to lead to increased cell killing in regions near the vessels, whilst the reduction in 

heterogeneity can improve the overall therapeutic effect of doxorubicin due to more uniform cell killing.  

The above findings were obtained in Model 1 where the maximum extravascular diffusion distance was 

75.2 μm. To obtain a better understanding of the effect of dosage, simulations were performed on the 

enlarged Model 1 with a maximum extravascular diffusion distance of 150.4 μm. Figure 4.14 shows the 

calculated NUN factors for both the original and enlarged Model 1 and different doses administered. 

Whilst in the model with smaller inter-capillary distance (Model 1), a higher dose led to an apparent 

reduction in intracellular concentration heterogeneity; when the maximum extravascular diffusion 

distance within the tumour is increased (enlarged Model 1), the reduction in concentration heterogeneity 

was less obvious. This could potentially reduce any expected improvement in therapeutic effect from 

increased doses. Hence, the results here suggest that an enhancement in therapeutic effect of doxorubicin 

with increasing dose is dependent on tumour microvascular architecture, with larger intercapillary 

distance potentially resulting in almost no gain increase in therapeutic effect. 
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         Dose = 200 mg     Dose = 100 mg  

  

 

  

 
 

Figure 4.13: Intracellular concentration for a bolus injection of 200 mg (left) and 100 mg (right). 
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Figure 4.14: Variations of non-uniformity factor in Intracellular concentrations for doses of 100 mg and 200 mg in the original 

and enlarged Model 1 

4.3.5 Effect of administration mode 

Fractionation of doxorubicin during administration where the drug is infused continuously over a period 

of time has been shown to reduce cardiotoxicity in certain cases [237, 238]. When doxorubicin was infused 

over a short period of time in the range of 60-200 minutes, differences in predicted outcome were 

observed [179]. The effect of administration with infusion times of 60 and 200 minutes on intracellular 

concentration were examined to understand whether this would enhance or limit the distribution of 

doxorubicin. Figure 4.15 shows the intracellular concentration maps at various time points for different 

infusion modes. When doxorubicin is infused over 60 mins, higher peak intracellular concentrations in 

regions near the vessels are achieved when compared to bolus injection, which would enhance the 

therapeutic effect for cells in these regions. When the infusion is increased to 200 minutes the intracellular 

concentration in regions near the vessels is lower than that achieved for both bolus and 60-minute 

infusion. This suggests that although increasing the infusion time to 60 minutes can provide better 

therapeutic effect in cells nearby the vessels, further increase in infusion time could be detrimental to 

effective therapy. Although there was a difference in peak concentration achieved in regions near the 

vessels for different infusion times, the intracellular concentration of doxorubicin in regions further away 

from the vessels or in those regions where the vessels were tortuous is relatively low in all cases regardless 



 

119 
 

of the administration regime. Cells in these regions are exposed to reduced concentration of doxorubicin, 

potentially highlighting the heterogeneity in treatment. 

Bolus 

 

60 min infusion 

 

200 min infusion 

 

 

   

   

   

Figure 4.15: Intracellular concentration for 100 mg of doxorubicin administered through bolus injection, 60 minute and 200 

minute continuous infusion in Model 1 

 



 

120 
 

To determine the effectiveness of the different infusion times, the peak intracellular concentrations in 

each tissue node i were determined over the simulated time course. To quantify the exposure of different 

tissue regions, the concentration in each tissue point was plotted against time and the AUC was 

determined for these tissue points. The AUC highlights the level of exposure of each tissue region to the 

drug where higher AUC are favourable. The peak intracelluclar concentrations and AUC are normalized to 

their respective peak values amongst the different adminstration modes. Figure 4.16a shows the peak 

intracellular concentration achieved using a bolus adminstration and continous infusion over 60 mins and 

200 mins. The 60 min infusion achieved the highest peak concentration in regions near the vessels that 

are well perfused. Peak concentrations for the 200 min infusion were significantly lower in regions near 

well perfused vessels. In poorly perfused regions, the peak concentration was relatively low and did not 

differ significantly between all the admisntration regimes. From figure 4.16b variable results are seen in 

the spatial AUC where the bolus injection resulted in a more uniform AUC. Heterogeniety in the AUC 

increased with increased infusion times as the AUC in well perfused regions increased whilst the poorly 

perfused regions show low relative AUC values suggesting poor exposure to doxorubicin. 

  Bolus   60 mins infusion 200 mins infusion  
 

a. Peak intracellular concentration 

   
 

b.  AUC    

   

 
Figure 4.16: (a) Peak intracellular concentration in each tissue point achieved during time course of simulation and (b) AUC for 

intracellular concentration during time course of treatment. 
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4.4 Summary 

In this chapter a time-dependent solute transport model describing the transport of doxorubicin in 

tumours is developed and coupled with the angiogenesis model and fluid flow model described in Chapter 

3. The tumour model allows an explicit representation of the vasculature incorporating properties such 

as individual vessel diameter, length, and vascular tortuosity, branching and spatially dependent 

distribution. The transport model incorporates intracellular uptake and allows the spatial distribution of 

doxorubicin in the vascular, extracellular and intracellular space to be determined as a function of the 

vasculature and its spatially dependent properties. The effects of different administration modes and 

dosage levels on doxorubicin distribution have been evaluated.  

The results show that extracellular and intracellular doxorubicin distributions are in part dependent on 

the distance away from nearby blood vessels. However, even in regions with a dense vasculature, drug 

concentrations could still be low if there were a greater number of branching vessels and tortuosity in the 

region that may contribute to reduced flow. Tumour vasculature can be extremely heterogeneous with 

large variations in architecture from case to case as evidenced by the inter-capillary distance ranging from 

30 μm to 250 μm in different tumours. This effect has been analysed by simulating the transport in tumour 

models with similar architectures but different inter capillary distances, showing that increasing inter-

capillary distance not only results in greater non-uniformity in drug concentration, but also reduces the 

peak intracellular concentration achieved in regions near vessels with low tortuosity, thereby reducing 

the therapeutic efficacy. 

Higher doses were found to increase the concentration of doxorubicin in all regions of the tumour tissue 

and had a marked effect on reducing heterogeneity which is likely to enhance the therapeutic effect of 

doxorubicin. However, in the case where the intercapillary distance was increased, the effect of higher 

doses was almost negligible. These simulations suggest that increasing dosage can improve the 

therapeutic effect of doxorubicin in tumours with high vascular density and small intercapillary distance. 

For tumours with greater vascular heterogeneity and large capillary spacing, increasing dosage could 

potential offer little enhanced therapeutic effect at the expense of increased toxicity. The effect of 

administering the drug in fractions continuously as opposed to a bolus injection was dependent on the 

infusion time. A higher concentration was achieved in specific regions as the infusion duration was 

extended up to a certain point, after which reduced intracellular concentrations in regions were seen in 

comparison to bolus injection. Regardless of the infusion duration, drug concentration in regions with high 
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vessel tortuosity or in regions distant from the vessels, did not differ noticeably. These results highlight 

the interplay between drug distribution and explicit properties of the vasculature such as distribution, 

tortuosity, vessel diameter and length. The distribution of drug in the tissue space is not only dependent 

on the distance from the nearest vessels, but also on the overall architecture of vasculature, the 

tortuosity, and individual vessel morphology which determines the amount of drug in it.   
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5 Three-dimensional imaging of vasculature in whole tumour specimens 

5.1 Introduction 

Ovarian cancer is one of the most common types of cancers afflicting women. There are many different 

subtypes that are classified based on the cell from which the cancer originates. Ovarian tumours mainly 

develop in epithelial cells, that make up the outer surface of the ovary, germ-cells, or in stromal cells [239]. 

Epithelial ovarian cancer (EOC) is the most common form accounting for 90% of all cases. EOC can be 

further divided into distinct histological subtypes including serous, mucinous tumours, endometrioid and 

clear cell tumours which differ in risk factors, molecular composition and properties and clinical treatment 

[240]. High Grade Serous Carcinoma (HGSC) is most commonly diagnosed of these subtypes [241].  

As described previously angiogenesis is an important process in the formation of blood vessels required 

for tumour growth and metastasis. Without vascular support through angiogenesis, tumours can become 

dormant, necrotic or apoptotic [67]. In malignant ovarian cancers angiogenesis has been detected in 

tumours as small as 20 mm3 in size [242, 243]. Ovarian tumours have the capacity to grow 40 times the 

size of a normal ovary which has an average diameter of 2 cm. For ovarian tumours to grow, they must be 

supplied with sufficient oxygen and nutrients, hence angiogenesis plays a key role in this process. 

Currently accepted prognostic indicators for EOC included tumour stage, grade, residual tumour volume 

and response to chemotherapy. Given the role of angiogenesis in tumour growth, assessment and 

quantification of angiogenesis has been suggested as a tool for prognosis of ovarian tumours. As described 

in section 2.1.2.3, a significant amount literature has been devoted to this, however the prognostic 

significance of angiogenesis remains unclear due to the contradictory findings. This can be attributed to 

the variability in the methods used to quantify angiogenesis. These studies have largely applied 

microscopy methods where thin sections are obtained from the tumour and are used to assess MVD. In 

ovarian tumours the vasculature has been shown to be more heterogeneous than other tumours [134], 

hence the use of 2D methods where a small area is sampled does capture the complete structure of the 

tumour. There is a need to quantify the tumour vasculature and angiogenesis in ways that capture the 

heterogeneity over large scales of the tumour volume. Some of the 3D imaging methods described in 

section 2.1.2 may hold some promise in addressing the limitations associated with traditional 2D methods 

when assessing cancers. 
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5.1.1 Human, animal and invitro tumour models 

As described in section 2.1.2, a number of 3D imaging methods are available to image the vasculature. 

Some of these have been applied to characterize the vasculature in different solid tumours. In vivo 

methods are limited to spatial resolutions on the order of several hundred micrometers. Intravital 

microscopy is an exception as it can provide high resolution 3D images, however it is limited to a depth of 

several hundred microns and is only applicable to animal models. Ex-vivo imaging techniques have been 

used to measure angiogenesis and characterize the vasculature of whole tumours in a number of studies. 

Most of these studies have used μCT and corrosion casting techniques which can be applied only to animal 

models or large organs where the feeding arteries can be easily identified and infused [244]. Other 

imaging methods including optical based techniques have also been applied to tumours obtained using 

animal models [105].  

Studies assessing the vasculature in human tumour tissues have used 3D microscopy techniques which 

are limited to a tissue depth of several hundred microns. Hence most of our current understanding of the 

vasculature and angiogenesis in whole tumours stems from animal models and invitro. Although mouse 

models provide valuable insight into the biology of tumours, the lack of translational relevance and 

potentially less predictive ability of mouse models has been highlighted given the large percentage of 

drugs tested in Phase I trials which are not able to make it to market [245]. For example, anti-angiogenic 

treatments that have shown considerable promise in pre-clinical tests in mice have been less effective 

than predicted in humans [246, 247]. Invitro models provide a method to assess the tumour vasculature 

where they can vary in level of complexity and incorporate different aspects. These include simple cancer 

lines to complex 3D models that incorporate various aspects of the tumour microenvironment. Using 

endothelial cells, they can be seeded onto ECM scaffolds and the growth microvasculature can stimulated 

through angiogenic factors secreted by nearby cancer cells. This can be used to understand the processes 

of angiogenesis in addition to fluid flow, extravasation and drug uptake within the model. However, these 

models can lack physiological relevance and no universal protocol exist, hence it can be difficult to 

compare and contrast data with other models [248]. Mouse tumour models provide another method to 

assess the vasculature where patient derived xenografts (PDX) are engrafted into the mouse hence the 

tissue retains the heterogeneity and architecture of the original tumour. However, whilst some tumours 

are easy to cultivate, others cannot be grown and hence some cancer subtypes cannot be reproduced. 

Additionally, whist human tumours can originate from different anatomical sites which would influence 

properties of the tumour tissue specially vascularization, in mouse models, the tissue is almost always 
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implanted subcutaneously for easy access. When the tumour is implanted, the stroma is remodelled and 

replaced with mouse derived stroma which could potentially differentiate vascularization in tumours and 

response to therapy, therefore, the genetic background of the host mice has a great influence on their 

sensitivity to angiogenesis.  

Considerable variations between the different tumour transplantation models also occur in the growth 

pattern of the vessels [246]. Pautu et al. analysed the vasculature in mouse models of melanoma and in 

human melanomas from different patients [249]. The found significant differences in the vascularization 

where the mice melanomas exhibited high vascular density and lumen size as opposed to the human 

samples. These differences could have potential implications when assessing the distribution of drugs. 

Dong et al. evaluated the effect of endothelial cell species on tumour growth and response to therapy 

[247]. They found that human tumours vascularized with human endothelial cells grow faster and were 

more resistant to treatment than xenograft tumours vascularized with endothelial cells. This shows that 

tumour xenograft vascularized with mouse blood vessels can overestimate the effect of treatment. Folarin 

et al. investigated 3D properties of  vasculature in colonic tumours in both human clinical tissues and 

mouse colorectal xenografts [90]. The vasculature in mouse models was found to be more disorganized 

than human tumour tissues. Hence, more understanding of the vasculature in human tumour tissues is 

needed. However, animal models have remained popular for several reasons including the lack of 

infrastructure in place to collect, transport, store and maintain human tissue for lab use. There is a cultural 

reliance on animal models given the large amount of historical data that can be used to validate and 

contrast the model. Additionally, alternative methods will be required to process human tissues which 

would require significant amounts of time and resources [250].  

This chapter is focused on assessing the feasibility of acquiring information on 3D vasculature from whole 

human tumour tissues by exploring the use of currently available imaging modalities. A protocol has been 

developed to visualize the vasculature in  human ovarian tumour samples using a novel 3D microscopy 

imaging system named the “Histocutter” which was originally developed for bone imaging in the 

Department of Bioengineering at Imperial College London [98]. Optical projection tomography (OPT), 

another recently developed 3D imaging technique, is used to image the vasculature in human tumour 

tissues for the first time. Results obtained from the two imaging techniques are compared. The methods 

are assessed for their ability to extract parameters to quantify angiogenesis and vascular architecture in 

tumour tissues. 
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5.2 Methodology 

5.2.1 Tumour tissue specimens 

Following cytoreductive surgery for patients with advanced primary EOC, Omentum tumour samples were 

collected and transported to the Ovarian Cancer Action Research Centre lab at the Institute of 

Reproductive and Developmental Biology in Hammersmith for processing. These clinical samples were 

obtained in collaboration with Dr Paula Cunnea and Professor Christina Fotopoulou at the Ovarian Cancer 

Action Research Centre and supplied by the Imperial College Healthcare NHS Trust Tissue Bank, following 

full informed patient consent. 

5.2.2 Whole tissue processing and IHC straining 

As no standard protocol is available for the processing and staining of whole tissues, different protocols 

were attempted to prepare the specimen. The preparation process involves the diffusion of various liquid 

substances through porous tissue. The ability of a substance to diffuse a certain distance is a function of 

the concentration of reagents, operating temperature and time. The first and one of the most important 

steps in tissue preparation is fixation which allows for the morphology and antigenicity of the target 

molecule to be preserved. Fixation involves a number of variables that can affect the degree to which the 

tissue is fixed; these include the type of chemical, concentration, and the temperature and time over 

which the process is carried out [251]. If the tissue is not completely fixed (under-fixation), rapid 

degradation of the target proteins within the tissue may occur which would reduce its immunoreactivity. 

Over-fixation of the tissue can cause the target epitope to be masked or result in excessive non-specific 

background staining [252].  

Fixation of the tissue samples in this work involves the following steps. The samples are immersed in 4% 

formaldehyde in PBS of volume that is 50 times larger than the volume of the tissue. Although there are 

many different types of fixatives such as alcohol and acetone, formaldehyde is the most commonly used 

fixative for IHC techniques and has shown good results in fixing tissues for vascular staining. Since the time 

of fixation and operating temperature play an important role in the fixation process, efforts were made 

to determine the fixation process that provides optimum staining quality. This was achieved by fixing the 

sample at room temperature (RT) (23 oC) while varying the time over which the tissue is fixed for different 

samples. Following fixation, each tissue sample was processed and stained using the same protocol to 

analyse the effect of varying fixation time. The fixation times used were 40 mins, 70 mins and 120 mins. 
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Following fixation, the tissues were washed 3 times with TBS1x for 30 mins to remove the fixative solution. 

The samples were blocked in a buffer solution (TBS1x+0.5% Triton+6% Goat serum) for 2 hrs at RT + 

overnight (o/n) at 4oC+ 2 hrs at RT. Primary incubation was the done with Anti-CD34 Rabbit monoclonal 

antibody at 1:100 dilution in TBS++( TBS1x+0.1% Triton+6% Goat serum) for 2hrs at RT + 72hrs at 4oC+ 2 

hrs at RT. Following primary incubation, tissue samples were washed in TBS++ four times for 30 mins each. 

Secondary antibody incubation was performed using Alexa fluor 488 Anti rabbit at dilutions 1:200 in TBS++ 

for 2 hrs at RT + o/n at 4oC+ 2 hrs at RT. Tissue samples were then washed in TBS1x 4 times for 30 mins 

each. Having completed these steps, different protocols were used to prepare the tissues for imaging with 

the Histocutter and OPT.  

The Histocutter is a novel imaging system based on a previous design [253] coupling a rotary microtome 

to an imaging hardware as shown in Figure 5.1. The imaging hardware is composed of a fluorescent light 

microscope, a white light source lamp and a high-resolution camera. The process is fully automated using 

a software developed in-house, Cutter Master CW (Java), which allows imaging parameters to be defined, 

such as section thickness (1-5 μm), fluorescence channel (UV, FITC, TEXAS RED or Cy5), magnification and 

exposure time. The system then automatically proceeds using a cut and view approach by which the tissue 

block is sectioned at the defined thickness, and serial images are taken of the block surface ensuring that 

focus is maintained and the block is aligned [254]. The series of 2D images can then be used to generate 

a 3D visualization of the sample. 
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Figure 5.1: Histocutter setup 

5.2.2.1 Histocutter - Tissue clearing and embedding 

As the whole face of the tissue block is imaged using the Histocutter, it is important to ensure that the 

block is opaque to block background autofluorescence and fluorescence from vessels that are not at the 

plane surface in order to limit distortion in the 3D image. To achieve this, the tissue sample is infiltrated 

with dyes that absorb light emitted at deeper parts of the tissue and the paraffin block is stained with 

dyes that minimize penetration of the excitation light into the block. The dyes are chosen so that they can 

absorb both the light exciting the surface of the block and that emitted by the block. The fluorescence 

antibody used in the staining protocol (Alexa fluor 488) has an excitation and emission maximum 

wavelength of 490 and 525 nm, respectively, and a commonly used filter for this antibody is FITC. Sudan 

IV has a maximum absorption wavelength of 519-523 nm which is within our emission range whilst Sudan 

II has a maximum absorption wavelength at 494 nm which is within our excitation range [255, 256]. These 

two dyes are used to infiltrate the tissue samples and stain the paraffin wax used to embed the tissue. 

The steps followed to prepare the tissue samples for Histocutter imaging after staining are described 

below. 

Dehydration: 



 

129 
 

Paraffin used in embedding is immiscible with water; hence the tissues must be dehydrated first by 

immersion in alcohol. Alcohol can penetrate the tissue quickly and replace the water contents in it, which 

can potentially cause shrinkage and hardening of the tissue. To avoid excessive distortion, the tissue 

samples are submerged in a series of solutions with increasing concentrations of lab grade ethanol as 

follows  

• 30% ethanol at RT for 15 mins 

• 50% ethanol at RT for 15 mins 

• 75% ethanol at RT for 15 mins 

• 96% ethanol at RT for 15 mins 

• 100% ethanol at RT for 15 mins 

• 100% ethanol at RT for 15 mins 

Clearing: 

Following dehydration, the samples are assumed to be cleared of water and replaced with ethanol. As 

ethanol is immiscible with paraffin, a solvent that is miscible with ethanol and paraffin is used to clear the 

tissue samples from ethanol. Xylene is a popular clearing agent used to perform this task, however, due 

to the concerns over its toxicity, Histoclear II (National DiagnosticsTM) - a safer clearing agent [257]- has 

been used as a substitute. Following dehydration, samples were sealed in a glass vial with Histoclear II for 

1 hr at RT.  The vial was then replenished with fresh Histoclear and left overnight at 4oC.  

Infiltration: 

As described earlier the tissue sample must be infiltrated with dyes that limit fluorescence from deeper 

regions of the block in order to minimize visual distortion. First the sample is immersed in a solution of 

Histoclear mixed with Sudan IV (0.5%) for 4 hrs at RT. An aqueous solution of stearic acid and Sudan II 

(4%) is prepared at 75 oC, which is used for secondary infiltration by immersing the tumour sample in 

solution and leaving in a vacuum oven at 600 mbar and 75 oC for 4 hrs. 

Embedding: 

An embedding medium is prepared using 10% stearic acid, 72% paraffin, 14% vybar, 2% sudan IV and 2% 

sudan II. Vybar is added to help eliminate air bubbles and dissolve the Sudan dyes. Stearic acid is needed 

to impart opacity and hold the block structure and shape. Tumour samples are immersed in the 
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embedding medium and left overnight in a vacuum oven at 600 mbar and 75 oC. Finally, pre-heated steel 

molds are used to embed the tissue samples in embedding solution. Blocks can settle at RT for a day 

before cutting.  

5.2.2.2 Image acquisition 

The blocks are mounted onto the Histocutter and trimmed until the tissue sample can be seen on the 

surface of the block. The fluorescent microscope was set to 2x optical zoom on a 4x magnifying lens with 

a Numerical Aperture (NA) of 0.4 and a working distance of 20 mm. The resolving power of this set up is 

given by the diffraction limit which defines the spatial resolution as follows  

 
𝑑𝑚𝑖𝑛 = 0.61

𝜆

NA
 

(5.1) 

 

where 𝜆 is the wavelength of the light and 𝑑𝑚𝑖𝑛 is the smallest resolvable distance. Using an excitation 

wavelength of 520 nm gives a lateral (i.e XY) spatial resolution of 0.793 μm for the optical set up. The 

images were captured using a high-resolution camera (4096 x 4096 pixels) with a field of view (FOV) of 4 

mm. This provides a pixel limited lateral resolution of 0.975 μm. The section thickness was set to 1 μm 

which is our theoretical axial resolution. The system was allowed to run overnight using the parameters 

specified in Table 5.1. The number of sections obtained is limited by the size of the block, and the number 

of usable sections varied depending on the thickness of each sample.    

Table 5.1 Parameters for Histocutter 

Cutting speed 2 (Speed range (1-5)) 

Thickness 1 μm 

Lamp intensity 100% 

Channel Channel 1 (Excitation at 495 nm, Emission at 520 nm) 

Exposure time 10 seconds 

Camera Apogee U-Series ALTA U16 s/n 091629 4096 x 4096 array 9 x 9 μm micron pixel 

Objective lens AZ-Plan Apo 4x Zoom 2x (NA 0.4) 

Working distance  20 mm 

Field of view (FOV) 4 mm (circle diameter)  

Pixel size 0.975 μm 
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5.2.2.3 Image processing and correction for fluorescence analysis 

The Histocutter imaging system provided a stack of images that were processed using Fiji (open source: 

http://fiji.sc/Fiji) and Matlab [258]. The images were saved in 8-bit (0-255 dynamic range) lossless 

compression format (PNG) to ensure that original intensity data is preserved for analysis. During image 

acquisition noise could be introduced into the image through various sources, which can limit the visibility 

of the vasculature. Therefore, denoising is an important part of image processing that is required to 

enhance the image quality whilst preserving key features. This is especially important here as the stained 

endothelium is usually very thin and fluorescence microscopy images can be difficult to process due to 

uneven illumination, background autofluorescence, and inhomogeneous staining. Highly vascular dense 

regions are particularly difficult to resolve.  

Different types of noise exist, including salt-and-pepper (Impulse), Gaussian and Poisson (Photon) noise. 

For images acquired with the Histocutter imaging system, the effect of Poisson noise is neglected which 

can be justified by the use of a relatively high exposure time to increase the photon count and the fact 

that Poisson noise reduces as the number of detected photons increases. When Gaussian noise is present, 

it is evenly distributed within the image where each pixel takes the sum of the true pixel value and a 

random Gaussian distributed value, so that the image histogram would resemble a Gaussian probability 

distribution. Gaussian noise is signal independent, and its standard deviation is constant with a noisier 

image having a larger standard deviation. Hence it is not dependent on the number of photons counted. 

To estimate the influence of Gaussian noise, images were acquired of a block without a fluorescent sample 

embedded in the medium to produce a homogenous image that would ideally be of constant intensity. 

Histograms of these images did not visually resemble a Gaussian distribution. A series of images were 

taken on the block, and the mean and standard deviation of pixel intensities in the field of view were 

evaluated as  𝜎 = 0.880 ± 0.004 (n = 10). The images (see Figure 5.2) reveal the presecence of salt-and-

pepper noise where sparse randomly distributed white pixels can be identified. To treat this type of noise, 

a 2D median filter (radius = 1px) is applied which moves through each pixel and applies the median value 

of nearby pixels. Applying this filter with a small radius allows for the removal of pixels which can be 

considered outliers whilst preserving small structures such as small vessels and vessel edges as shown in 

Figure 5.2. After application of the median filter, analysis of the pixel intensity within the same area of the 

blank block was performed and the corresponding mean and standard deviation were 𝜎 = 0.124 ± 0.006 

(n = 10).  
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Figure 5.2: Application of 2D median filter to salt and pepper image removes outlier pixels and preserves vessel structure 

5.2.2.4 Analysing fluorescence intensity 

To reliably analyse fluorescence, care must be taken to ensure that no information is lost, and no image 

processing is performed that can distort the raw data. During image acquisition, an offset is added to the 

image intensity by the camera to ensure that the signal obtained from the CCD is above zero. To correct 

for the offset, a dark image was taken where no light was passed to the camera and the mean pixel value 

was calculated which was then subtracted from all the images in the stack. Saturation of images can 

present another problem for fluorescence quantification. The number of photons that can be collected in 

each pixel is limited by the capacity of the detector in the system. Once this limit is reached, photons 

reaching the pixel would not be counted and the image is considered saturated. When this occurs, the 

linearity of the detector is lost, and it would not be possible to determine the true intensity of the pixel, 

hence these images cannot be used to quantify fluorescence.  

The sample fixed for 40 mins was processed first. A 10 second exposure time was chosen based on trial 

runs performed before automating the process to ensure that enough signal is collected to improve 

resolution whilst avoiding image saturation. However, analysis of some of the images revealed the 

presence of saturation. The number of saturated images accounted for approximately 7.9% of the total 

images acquired from the sample. Similarly, for the 120 min fixed sample, although the trial images 

showed no saturation, saturation was found in some images and accounted for 7.5% of the total images 

acquired for the sample. When acquiring images for the 70 min sample, a 10 second exposure time 

produced saturated images during initialization. Hence, the exposure time was reduced to 5 seconds in 

order to reduce or avoid saturation. After imaging the sample, no images in the stack were found to be 

saturated. The saturated images obtained from the 40 min and 120 min fixed samples were used for 
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visualization of the vasculature but were excluded from the set of images used to compare and quantify 

the fluorescence between the samples. To adjust for the different exposure times between the samples, 

the linearity of the detector is utilized where the number of photons detected should ideally be 

proportional to the exposure time. Pang et al. proposed a method to normalize images with different 

exposure times using dark pixel intensity [259]. Knowing this dark pixel intensity (DPI), the image obtained 

from one exposure time can be linearly scaled to represent an image obtained under a different exposure 

time. Mathematically this is expressed as follows 

 Intensity(𝑡1) − DPI

𝑡1
=
Intensity(𝑡2) − DPI

𝑡2
 

(5.2) 

Where t1 and t2 are the respective exposure times. To obtain DPI a series of images at different exposure 

times were taken with the camera shutter closed to block light from reaching the CCD. The mean DPI 

determined from images after filtering salt-and-pepper noise was 16.015 ± 0.125. This value was used 

as the DPI value to recalculate and normalize the pixel intensity relative to exposure time.  

Several measures have been used to quantify and compare fluorescence images. With a stack of images, 

the sum or the mean intensity of the slices is often used. However, these measures can be difficult to 

apply here as vessels are the object of interest in this study and they are known to be heterogeneously 

distributed. Hence, differences in sum intensity can be governed more by the heterogeneity or vascularity 

of the tumour. To compare fluorescence between the samples we use the maximum intensity value in 

each slice as an indicator. Another indicator used is the signal to background ratio (SBR) in slices. The ratio 

is expressed in decibel units as follows 

 
𝑆𝐵𝑅(𝑑𝐵) = 20 × log (

𝑚𝑒𝑎𝑛 𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝑚𝑒𝑎𝑛 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
) 

(5.3) 

The mean signal intensity was obtained from a region of interest (ROI) defined on the vessel. Mean 

background intensity was measured using the mean value of a ROI outside the vessel area as shown in 

figure 5.3. 
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Figure 5.3: ROI highlighting vessel and background areas used to calculate signal to background ratio. 

5.2.3 Optional projection tomography (OPT) 

Optical projection tomography is a relatively new method that can be used to produce 3D images of a 

sample on a mesoscopic scale (1-15 mm), whilst maintaining resolutions on the order of several microns. 

Similar to X-ray computed tomography, in OPT the sample is rotated at incremental angles where a 2D 

wide-field projection is obtained over a 360o angle. The set of 2D images is then used to reconstruct a 3D 

image.  

The OPT images were obtained in collaboration with Samuel Davies, Sunil Kumar, Dr James McGinty and 

Professor Paul French in the Department of Physics, Imperial College London. In order to obtain 2D 

projection images, the absorption and scattering of light within the tissue must be reduced which can be 

achieved using chemical clearing techniques that render the opaque tissue transparent. The cleared 

sample is then mounted on a magnetic rotor that automatically rotates the sample at incremental angles 

to provide a set of projections. 

5.2.3.1 Optical clearing  

Following fixation and staining, samples were optically cleared using a clearing agent. BABB (1:2 benzyl 

alcohol: benzyl benzoate) is a commonly used clearing agent and is compatible with the labelling method 

used in here. The samples were first suspended in 2% by weight agarose gel to stabilise the sample when 

it is being rotated during imaging. The sample was then dehydrated by immersing in increasing 

concentrations of methanol up to 100%. Following dehydration, the samples were immersed a 1:2 
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mixture of BABB until the methanol is completely displaced by the highly refractive BABB solution 

(refractive index ~1.56) to minimise refraction during imaging. 

5.2.3.2 Image acquisition and reconstruction 

The sample vial is mounted on a magnetic rotor that allows for the sample to be rotated at incremental 

angles. A laser diode based OPT system was used to image the sample. The fluorescent molecules in the 

sample were excited using a 470 nm LED, and the emitted fluorescence was spectrally selected with the 

535 nm emission filter.  

The imaging system comprised of a 1x telecentric lens (58-430; Edmund Optics) with a 5 mm DOF. The 

images were detected on an sCMOS camera (Zyla 5.5; Andor Instruments) with 2560 x 2160 pixels of 6.5 

µm size providing a field of view (FOV) of 16.6 x 14.0 mm. The sample was fully rotated over 1280 equally 

spaced angles to provide a total of 1280 projections. Using equation 5.1 the system provides a diffraction 

limited lateral resolution of ~4.08 μm. The 2D projections were then used to reconstruct a 3D image using 

a filtered back projection algorithm where resolution is assumed to be isotropic and downgraded to 

approximately ~20 μm. 

5.2.4 Blood vessel segmentation 

To quantitatively analyse the structure of the vasculature and its features, segmentation tools are applied. 

Methods for segmentation vary depending on the target structure and imaging modality. In the case of 

vascular segmentation, significant research has been carried out which has been reviewed by Kirbas and 

Quek [260]. Most vascular segmentation algorithms have been designed for Magnetic resonance 

angiography (MRA) and CTA images where the vasculature is clearly visible with low noise. In our case, 

only the endothelium is stained providing visibility of only the outer wall so that the vessel appears as a 

hollow structure. In addition, the signals are usually weak, sparse and non-uniform with some 

discontinuous vessels. To address these challenges, the images need to be pre-processed using a pipeline 

to remove noise, correct illumination and to enhance the tubular structure of the vasculature for 

segmentation.  

Generally, the process involves the use of filters to remove noise, background and autofluorescence, and 

the application of normalization and equalization techniques to even out illumination across all vessels.  

After correcting the image, algorithms are employed that are able to detect and enhance tubular or vessel 
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like structures to allow for easy thresholding. Given the large amount of data and images acquired in this 

project, manual or semi-automated segmentation is not feasible, hence an automated segmentation 

method has been sought. In this work an automated segmentation method was developed using Fiji 

(http://fiji.sc/Fiji). The images were first denoised using median filters. For OPT the image intensities in 

each slice were normalized to the mean intensity of the entire stack to compensate for loss of intensity in 

deeper tissue regions. Background in the images was corrected using a Rolling ball algorithm [261]. The 

sharpness of the vessels was enhanced by subtracting Gaussian filtered images with a sigma radius 

corresponding to the largest vessel. To extract the vessels an automated thresholding algorithm was 

implemented based on the triangle method [262]. Following automated thresholding, the analyse particle 

plugin developed in Fiji was applied to select objects with a certain degree of circularity to extract tubular 

objects. A binarized image is then produced which represents the vasculature of the tumour. To extract 

features of the tumour network the binary image was skeletonized using an algorithm based on the work 

by Lee at al. [263].  

To validate the segmentation and binarization of the image, the original, skeletonized and binarized 

images are overlaid for visualization. To quantitatively validate the segmentation results, a small sample 

of images are segmented manually to obtain the ground truth and are then compared with the 

corresponding automatically segmented images using overlap-based metrics including the Dice coefficient 

(DICE) and volume similarity which determine the difference between the two images [264, 265]. 

5.2.5 Image analysis 

It has been suggested that the expression of CD34 is associated with angiogenesis and tumour 

invasiveness [108, 266]. The density of CD34 is calculated in each slice as the ratio of the segmented area 

to the area of the image slice.  

To analyse vascular morphology and network features, several parameters are calculated using the 

segmented and skeletonized vasculature. The analyse skeleton feature in Fiji was applied to obtain 

information on the lengths of each branch and the Euclidean distance between each point [267]. These 

include vascular volume density and length density as defined by Stamatelos et al. in their morphological 

analysis of vasculature in breast tumours [93]. MVD is usually estimated using 2D slices in highly vascular 

regions, however this could introduce bias and provide conflicting results. In this study MVD is calculated 

using the approach by Zhang et al. [135] which is based on vessel center lines. To calculate the mean cross-

sectional area the volume of the segmented image is divided by the sum of the branch lengths in the 

http://fiji.sc/Fiji
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skeletonised image. To calculate the surface area of the vasculature, the 3D objects counter plugin in Fiji 

was applied which uses voxels connected with the background to determine the surface area of an object 

[268]. The tortuosity was calculated as an average for the entire network using the extracted lengths for 

each branch and the Euclidean distance. A summary of the parameters used for analysis of angiogenesis 

and vasculature and their definitions are given in Table 5.2. 

Table 5.2 Description of parameters used for analysis of angiogenesis and vascular morphology. 

Parameter Units Description Formula 

CD34 density  %  Ratio of segmented mask pixels to 

background pixels 

∑pixels on segmented object

∑ pixels
 

MVD dimensionless Ratio of skeleton voxels to tissue 

voxels 

∑voxels on vessel centerline 

∑ voxels on region of interest 
 

Vascular volume density %  Ratio of vessel voxels to tissue voxels ∑voxels on segmented object

∑ voxels on region of interest 
 

Mean cross sectional area 

(𝐴𝐷) 

µm2 Volume of segmented image over 

sum of branch lengths 

∑voxels on segmented object

∑ Branch length
𝑁𝑏𝑟𝑎𝑛𝑐ℎ
𝑖=1

 

Vessel diameter µm Obtained from mean cross-sectional 

area. 

2√𝐴𝐷/𝜋 

Vessel surface area per 

unit tissue volume  

mm-1 Ratio of total surface area of 3D objects 

segmented to the total tissue volume 

Total surface area of 3D objects  

Total tissue volume
 

Mean vessel tortuosity dimensionless Mean ratio of branch length to 

shortest distance between points 

∑
Branch length

Euclidean distance
𝑁𝑏𝑟𝑎𝑛𝑐ℎ
𝑖=1

𝑁𝑏𝑟𝑎𝑛𝑐ℎ
⁄  
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5.3 Results and Discussion 

5.3.1 Histocutter 

5.3.1.1 Fluorescence analysis 

When imaging the samples, they were centered within the microscope’s maximum field view of 4 x 4 mm. 

Since the samples were as large as 5 mm in size with varying thicknesses, some parts of the samples were 

out of view. For samples fixed with 40 mins and 70 mins durations, the samples were trimmed, and the 

process was then automated to acquire 1535 and 1000 slices, respectively, before reaching the edge of 

the samples. For the sample fixed for 120 mins, 400 slices were obtained as a large portion of the sample 

was trimmed before a signal was established visually. The mean intensity for each slice was calculated 

and plotted as a function of the z-axis as shown in figure 5.4. 

    

Figure 5.4: Z-axis mean intensity profile of tissue samples with fixation duration of 40 mins (left), 70 mins (middle), 120 mins 

(right) 

It can be seen that the 70 min fixed tissue had higher mean intensity values than the other samples. 

However, this does not necessarily mean that a 70 min fixation would be optimal as this sample might 

have a higher vascular density. To analyse the fluorescence intensity of different samples, the maximum 

intensity at each slice is plotted as shown in Figure 5.5. The maximum intensity in the trimmed sample 

fixed for 40 mins had a relatively low max intensity value initially in the deeper parts of the tissue before 

rising as the cut plane moved towards the tissue surface. A gap in the data is present between slices 900-

1000 as they correspond to saturated slices which cannot be used to quantitatively analyse fluorescence. 

The 70 min fixed sample showed higher maximum intensity values by approximately 4-fold which was 

consistent throughout slices before dropping as the tumour surface was reached (>700 slices). The 120 

min fixed sample had a higher intensity relative to the central region of the 40 min sample, however, in 

the peripheral region, the intensity levels were similar. Overall the 70 min fixed sample showed 

consistently higher maximum intensity values than the samples fixed for 40 min and 120 mins. 
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Figure 5.5: Maximum pixel intensity in stacks from sample fixed for 40 mins (top), 70 mins (middle) and 120 mins (bottom). 

Figure 5.6 shows plots of the maximum intensity values in slices sampled from different regions of the 

tissues for 40 mins and 70 mins. The slices were obtained from central and peripheral regions within the 

tissue sample. The sample fixed for 40 mins showed significant variability in intensity between central and 

peripheral regions. In the central region the intensity was low and exhibited uniformity where no 

significant variations occurred. In the peripheral region the intensity was 1.5-4 times higher and showed 

significant variability from slice to slice. The sample fixed for 70 mins showed insignificant change in 
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intensity values between the periphery and deeper tissue regions and no erratic changes in intensity 

between slices. These data suggested that the 40 min fixation time was not enough to fix the whole 

tumour which resulted in uneven staining and heterogenous maximum intensity. The 70 min fixation 

provided consistent intensity between randomly sampled slices. 

 

   

 

Figure 5.6: Maximum pixel intensity in stacks from sample fixed for 40 mins (top) and 70 mins (bottom) showing the difference 

in intensity between slices acquired from the tissue periphery and deeper tissue regions 

To calculate the signal to background ratio the mean intensity values from the vessel area is divided by 

the background area as described in equation 5.3. Figure 5.7 shows the mean signal to background (S/B) 

ratios in slices obtained in the peripheral and central tumour regions. The S/B ratio in the 40 min fixed 

tissue was significantly lower in deeper tissue regions as opposed to the surface. The 70 min fixed tissue 

exhibited higher S/B and the mean value did not vary much between randomly sampled slices from the 

central and peripheral tissue regions.  
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Figure 5.7: Signal to background ratio calculated from slices obtained from slices in the central and peripheral tumour region. 

The contrast in intensity and S/B ratio between the central and peripheral regions of the 40 min fixed 

tissue suggested that it was inadequately fixed leading to uneven staining. The shorter fixation time could 

have caused poor antigen preservation in the deeper tumour regions where fixatives do not have enough 

time to penetrate. In the case of the 120 min fixed sample, data from obtained slices showed slightly 

higher intensities and S/B compared to the 40 min tissue, however it was not able to match the 70 min 

fixed sample and erratic changes in signal levels were observed from slice to slice. More so, when the 

sample was being trimmed, low or no signal was observed and most of the sample was trimmed before 

any signal was detected which led to only 400 slices being obtained. These observations are consistent 

with over fixation where excessive antigen masking is known to occur, causing a lack of signal and 

potential high background intensity. Based on these findings a fixation time of 70 mins was selected for 

the samples used in this study, which were approximately 5 mm thick. 

5.3.1.2 3D vascular reconstruction and analysis 

The image processing steps described in the previous section were performed with the aim of preserving 

raw gray values in order to quantify fluorescence within the tumour samples. In this section the focus is 

on image processing steps that can enhance vessel features and allow for easy segmentation and analysis 

of structural properties. Figure 5.8 shows the adopted workflow and illustrates its effect on image 

enhancement. To remove salt-and-pepper noise, images were processed using a 2D median filter. 

Background from the camera was corrected using dark field images obtained from the camera whilst 

background from Sudan dyes was subtracted using an image of a flat block. Background autofluoresence 

originating from the tissue was treated using a rolling ball algorithm and Gaussian filters [261]. To address 

loss of intensity caused by uneven illumination and staining, a local normalization algorithm was applied 
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which allows for signals from faint vessels to be enhanced whilst not oversaturating high signal regions. 

Figure 5.8 shows the ability of the adopted workflow to enhance vascular structures as small as 15 μm in 

diameter. 

Raw Image  2D median filtered (1 px)  Normalization and 
equalization 

 Autofluorescence 
correction 

 

 

 

 

 

 

 

  Raw image  Post-processing   

  

 

 

 

  

Figure 5.8: Image processing workflow to enhance image and vessel features. (Bottom) Zoomed-in image of small vascular 

structure in raw image and enhanced image. 

Using the workflow described above, images from the samples were processed and visualized using 

maximum intensity projections (MIP) and 3D projections from different angle as shown in Figure 5.9 for 

the 40 min and 70 min fixed samples. In Figure 5.9a, for the 40 min fixed sample, the images show 

increasing vascular density and resolution of small vessels regions near the tumour surface which was 

more likely caused by the uneven staining rather than heterogeneity in vascular distribution. Although the 

intensity has been equalized, some vessels deeper in the tissue appear fainter with a lower contrast. The 

vessels visible show a range of diameters, with smaller capillaries near the tumour surface showing chaotic 

distribution and topology. The 70 min fixed sample showed more uniform staining as seen in Figure 5.9b 

where the vessels had a uniform brightness along the depth of the tissue.  
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a    

    

b    

    

Figure 5.9: Maximum intensity projections from different angles for a tumour tissue sample fixed for (a) 40 mins and (b) 70 

mins. 

The vascular segmentation method described in the methodology in section 5.2.4 was applied. The 

segmentation process was visualized using a small sample of images within the stack as shown in figure 

5.10.  

Processed image Binary image from adaptive 
thresholding 

Centerline extraction Node assignment 

    

Figure 5.10: Segmentation and skeletonizaiton of the vasculature. Far right picture shows the assigment of of node to the 

skeletized vasculature with blue points denoting end points and purple points denoting junctions 

To validate the segmentation method, the processed image in figure 5.10 was segmented manually by 

hand and compared with the image produced using the automated segmentation procedure. The Dice 

coefficient was close to unity whilst the volume similarity was 0.001, suggesting an excellent agreement 

between the two images. On a larger scale, manual segmentation for validation is not possible given the 
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large amount of data processed, hence an overlay of the segmented mask on the source image is used to 

evaluate the segmentation method as shown in figure 5.11. The overlay shows that the segmentation 

method is able to capture many of the major vessels that are visible. 

   

Figure 5.11 MIP of image stack (left), binary mask generated using adaptive threshold algorithm (center), Source image with 

mask overlay. 

As shown in figure 5.10 the skeleton image of the tumour vasculature can be labeled with points denoting 

branching and ends. Using the reorganized dataset, the length of each branch can be calculated and the 

Euclidean distance (shortest length) between the start and end nodes of the branch can be calculated to 

derive vessel tortuosity. To quantitively analyse the vasculature, the set of equations listed in table 5.2 

were used to calculate the morphological parameters of the vasculature based on the binary and 

skeletonized images of the 40 min tissue sample. The average diameter was found to be 14.09 µm with a 

mean length of 17 µm, and the tortuosity of the vessels was found to be 1.28±0.49. The mean length of 

vessels can be explained by the poor vessel staining in the sample which is highlighted by the low vascular 

volume density of 1.4%. In addition, small disturbances are seen in the alignment of slices (Figure 5.12) 

which can introduce error when the segmentation and skeletonization method attempts to register a 

vessel. Calculation of the CD34 density from different tumour samples yielded values up to 5% for the 40 

min sample and 3% for the 70 min tumour and this was significantly lower than expected from the 

literature data [269]. The use of the Histocutter was discontinued at this point and an alternative imaging 

method was pursued. 
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Figure 5.12: MIP of Z-stack from y-axis showing some unalignment in the image stacks. 

5.3.2 OPT 

The Histocutter is limited to a field of view of approximately 4 x 4 mm. OPT, a novel imaging method can 

image samples on the order of centimeters. Using this imaging modality, a tumour, 12 mm wide was 

examined. Reconstruction of the OPT images provided a stack of size 2160 x 2160 x 2212 which were 

visualized using the MIP as shown in figure 5.13. As the camera and imaging system differ from those with 

the Histocutter, different image processing methods were applied. Given that the tumour sample is 

imaged as a whole, depth related intensity losses are expected. To compensate for this, each optical slice 

was normalized by the mean value of the entire tumour sample to enhance illumination as described in 

section 5.2.4. The background autofluorescence was removed using a rolling ball algorithm [261]. A 3D 

Gaussian filter was applied with a width of 60 pixels based on the largest vessel structure visible which 

corresponds to 390 μm. The filtered images were subtracted from the originals to remove background 

and enhance vessel sharpness as shown in Figure 5.13 and Figure 5.14. 
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Figure 5.13: Maximum intensity projections (MIP) for tumour sample imaged with OPT system. Left shows raw image and right 
shows image after processing 

    

    

Figure 5.14: MIP of tumour vasculature from different angles after image processing.                         

The tumour vasculature was segmented and skeletonized using the same algorithm described in section 

5.2.4. Figure 5.15 shows the response of the adaptive threshold algorithm and its ability to segment the 

vasculature from the OPT generated images. Visually, the overlay appears to cover major parts of the 

tumour vasculature with no apparent leakage or over segmentation. 

   

Figure 5.15: MIP for slices 1800-2000 showing contrast enhanced vasculature (left), segmented mask (center) and overlay of 

mask on source image (right). 
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5.3.2.1 CD34 density 

The binary image produced from the segmentation of the vasculature was used to generate a skeleton of 

the vascular network as described previously. Different volumes of interest within the same tumour 

sample were defined to evaluate the intratumoural heterogeneity. A volume of interest (VOI) was also 

defined in each of the images from other samples collected and were used to evaluate intertumoural 

heterogeneity of CD34 expression.  Figure 5.16a shows tumour sample 1 and the volumes interest defined 

in this tumour whilst Figure 5.16b shows the volumes of interest obtained from different tumour samples. 

Each slice within the VOI of the binary image was measured for CD34 density distribution over a data set 

of 500 each. 

a                       Sample 1             Volumes of Interest 

 

 

 

 

b                    Sample 2 Sample 3 Sample 4 

   

Figure 5.16: (a) MIP of tumour sample 1 (left) showing highlighted boxes that represent volumes of interest chosen. MIP of 
volumes of interest 1 (red), 2 (blue) and 3 (green) (right). (b) Volumes of interest in different tumour samples collected. 
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Boxplots of the CD34 density distribution are shown in figure 5.17 for different regions within the same 

tumour (Intratumoural) and in different tumour samples (Intertumoural). The CD34 density was found to 

be between 4 and 26% within the same tumour with the range varying between different regions. In 

Figure 5.17a, VOI 1 showed a larger range in CD34 density than the other VOIs. The variance was found 

to be highest in VOI 1 compared to other VOI suggesting a higher heterogeneity in CD34 distribution within 

VOI 1. Figure 5.17b shows a comparison between volumes of interest in different tumour samples. 

Negligible differences in the mean CD34 value were found between samples 2 and 3 which were obtained 

from the same patient. CD34 density was found be higher in sample 1 and the variance was found highest 

in this sample. Sample 4 exhibited a significantly lower mean CD34 density compared to other samples. 

The range of values obtained for CD34 density were consistent with other studies assessing CD34 density 

in different types of tumours [269, 270]. 

a 

    
 
b 

      

Figure 5.17: (a) CD34 density in different regions with the same tumour sample and (b) in different tumour samples (n=500). 
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5.3.2.2 Vascular structure analysis 

The set of equations in table 5.2 were used to analyse the vasculature of tumours. Figure 5.18a shows 

boxplots of microvascular density (MVD) determined for different volumes of interest within the same 

tumour whilst Figure 5.18b shows the MVD for different tumour samples. The volumes were segmented 

into 100 sub volumes each containing 5 slices. The MVD was then calculated in each sub volume as 

described in table 5.2. The range of MVD values varies between the different regions, however VOI 1 and 

2 exhibit large variance values, suggesting a more heterogeneous MVD distribution within these VOIs. The 

MVD values are in line with values obtained by Zhang et al. when assessing gastric tumours [135]. When 

comparing the MVD across the different tumour samples, variations were found where samples 2 and 3 

obtained from the same patient had the highest mean MVD value, whilst sample 4 had significantly lower 

MVD values. Larger variances were found in the MVD of samples 1 and 2 suggesting greater heterogeneity 

in MVD across these samples.  

a 

    
 
b 

      

Figure 5.18: (a) MVD in different volume of interests within the same tumour and (b) across different tumour (n=100). 
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In the equation in table 5.2 the mean diameter for the entire tumour was calculated as an average using 

the total volume of the segmented mask and the total length of the skeleton. To obtain the diameter 

distribution in the tumour, an automated counting algorithm was employed to count objects in 3D. The 

diameter distribution of the vessels was determined using the mean distance from the objects center to 

its surface. The tumour tissue was found to exhibit a high degree of variability as seen in the diameter 

distribution shown in figure 5.19.  

 
Figure 5.19: Vessel diameter distribution in tumour sample 1.  

To assess the distribution of vessel diameters between different tumour regions and across different 

samples, the log values of the diameters are shown in the box plots in figure 5.20. The diameter range did 

not vary significantly between different regions within the same tumour; however, the plots show 

variability in diameters between different samples with sample 3 exhibiting larger average diameters.  

 

Figure 5.20: Vessel diameter boxplots for different tumour regions (center) and for different tumour samples (right). 

The volumes of interest can used to extract skeleton networks which can be used as inputs for models to 

evaluate fluid flow and drug transport in solid tumours. The network presented in Figure 5.21 is extracted 

from volume 1 in sample1 which shows a well-connected network with minimal gaps highlighting the 

applicability of the imaging method in extracting vascular networks cleanly at high resolutions.   
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Figure 5.21: Skeletonized network obtained from volume 1 in sample 1. 

Table 5.3 provides the mean values calculated for the geometrical properties of the tumour vasculature 

and a comparison with relevant data in the literature. Parameter values are widely available from animal 

studies, however given that the tumour vasculature can vary greatly between human and mouse, an 

attempt was made to prioritize data obtained from studies examining human tumours. When the 

corresponding human data is not available, values for mouse models are used for comparison. The 

parameters obtained from the OPT images correlated well with those found in literature using human 

samples. Vessel surface to volume and tissue volume areas were smaller than literature data obtained 

from mouse studies. Intuitively this is expected as the mouse vasculature is much  denser whilst human 

vessels are larger, longer and sparse [271, 272].
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Table 5.3 Averaged characteristic parameters calculated for the tumour vascular obtained from the different samples. 

Sample number 1 2 3 4 Available literature data 

MVD (x10-4) 20.60 25.04 30.26 12.90 4.1-20.72 [135](Mouse) 

Vascular volume density (%) 12.87 
 

14 13.08 5.8 5-15% [273] (Human) 

Vessel diameter (µm) 48.83 50.74 68.13 75.60 5-366 [90] (Human) 

Mean vessel cross section area (µm2) 1872.55 2021.69 3645.85 4488.59 400-2300 [90] (Human) 

Length density (mm-2) 68.73 76.05 35.69 19.92 
 

10-140 [274, 275](Human) 

Maximum extravascular diffusion 
distance (µm) 

68.06 64.70 94.44 126.41 10-630 [90] (Human) 

Vessel surface area per unit tissue 
volume (mm-1) 

12.046 
 

15.018 
 

9.814 
 

4.815 
 

15-95 [87](Mouse) 

Vessel surface to volume ratio (mm-1) 93.598 
 

106.529 
 

75.424 
 

82.431 
 

122-376 [93] (Mouse) 

Tortuosity 1.26±0.33 1.28±0.35 1.27±0.33 1.28±0.42 1.12-1.27 [276] (Human) 



 

153 
 

5.4 Summary 

This chapter focuses on assessing the feasibility of imaging the vasculature in whole tumours on the order 

of cm scale at microscopic resolutions. Most imaging methods are only applicable to animal models, but 

mice exhibit different response to tumour transplantation which can influence their sensitivity to 

angiogenesis. Hence, human tumour samples extracted from patients should be studied to gain more 

insights into the vasculature and angiogenesis in different types of tumours. 

Histocutter - an automated histology-based imaging method - was tested for the first time on tumour 

tissues in a hope to understand whether this imaging system could be used to extract tumour vasculature. 

Histocutter has been previously used to image bone, cartilage, and whole mouse eyes. The results show 

that although some vascular structures could be extracted, the single quality and strength were highly 

variable with the derived CD34 density being significantly lower than expected across different samples. 

Slight misalignments in the stacks were observed using a y-axis projection as shown in figure 5.12 which 

adds to the difficulty in segmentation of the vasculature. In order to limit image distortion, fluorescence 

from deeper parts of the tissue must be blocked out. The tissue infiltration and embedding protocol used 

to achieve this requires the tissue to be exposed to high temperature for long periods of time which can 

distort the morphology of the vasculature and visibly shrink the size of the tumour. Even when the 

embedding protocol is applied, vessels with high fluorescence signals can emit light from deeper parts of 

the block and distort the Z-stack image and alignment. The imaging system was found to have limited use 

in acquiring consistent, good quality data on microvasculature in a whole tumour.  

OPT, a relatively new imaging method was pursued. The system is able to image tumours as large as 15 

mm which is much larger compared to the Histocutter employed in this study. The clearing method 

required for OPT is not as harsh as the embedding method used in Histocutter, thereby limiting any 

potential distortion of the tissue. This is crucial given that the architecture of the vasculature is of interest. 

Additionally, the technique is non-intrusive, and samples can be fully preserved after image acquisition. It 

has recently been demonstrated that tissue samples can be cleared and  re-embedded in paraffin for 

histology [276]. The resolutions that can be achieved using this imaging modality are dependent on the 

size of the sample and can be on the order of several microns.  

Using the OPT system developed by a team in Physics (Imperial College London) for different applications, 

high resolution images of human tumour samples up to 12 mm in size were obtained. These acquired 

images were processed for segmentation of the vasculature and extraction of key parameters. These 
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parameters included CD34 density, MVD density, vascular volume density, average diameters, cross-

sectional area, vascular to volume ratio and tortuosity. The derived parameters were within the range of 

available data found in the literature. CD34 density and MVD were found to vary both intratumourally 

and intertumourally. Assessment of the distribution of vessel diameters showed no significant difference 

intratumourally, however, differences were found across the tumour samples. The results obtained with 

the OPT system show great promise and warranty further application of the imaging technique along with 

the developed protocol to a large tumour sample size with the view of correlating vascular features and 

CD34 density to prognosis and treatment outcomes. More efforts are needed on developing robust 

segmentation methods for tumour vasculature from  fluorescently labelled images, as demonstrated in 

recent studies [277, 278]. This would allow extraction of 3D vascular structure and its network in whole 

human tumour samples, which can be used as an input for model geometry in the fluid flow and drug 

transport model discussed in Chapters 3 & 4.   
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6 Conclusions and future work 

In this chapter the main conclusions from the work described in this thesis are presented. A critical analysis 

of the methodology is performed, and their limitations are discussed. Finally, recommendations for future 

work are given.  

6.1 General conclusions 

The vasculature in tumours has been shown to be aberrant, tortuous and erratic which can have 

significant implications for fluid flow, drug transport and tumour aggressiveness. Within this work a 

mathematical modelling framework has been developed to investigate the role of tumour 

microvasculature on fluid flow and drug transport. Furthermore, two novel imaging techniques, 

Histocutter and OPT, have been tested for their capability of imaging the 3D vasculature at high 

resolutions in human tumour samples with sizes on the order of centimetres. In what follows the main 

findings of each chapter are summarised, and their implications are discussed. 

6.1.1 Fluid flow in solid tumours 

Fluid dynamics in tumour tissue needs to be understood as it plays a key role in tumour growth, metastasis 

and the delivery of therapeutics. Previous studies investigating fluid flow assumed the vasculature to be 

uniformly distributed without incorporating its explicit architecture. Other models that incorporated the 

distribution of the vasculature applied homogenization methods without accounting for real geometric 

features of the network. Furthermore, previous fluid flow models treated intravascular flow and 

interstitial flow in a decoupled manner, so that the effect of transvascular leakage on blood flow was not 

captured. The work described in chapter 3 addresses these issues by employing the fluid flow model 

developed by Pozikridis for a single capillary and extending this model to a large scale vascular network. 

The 2D angiogenesis model developed by Anderson and Chaplain has been implemented in 3D to generate 

complex vascular networks that capture several abnormalities of the tumour vasculature including blind 

ends, excessive branching, loops and arteriovenous shunts. By applying fluid flow based boundary 

conditions on the vessel wall and integrating the pressure over the vessel surface, explicit morphological 

features of the vasculature including each vessel’s orientation, radius and length can be incorporated. The 

model enables a strong coupling between intravascular and interstitial flow with intravascular and 

interstitial pressures being resolved at the surface of the vessel, thereby providing a more accurate 
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description of transvascular flux. Furthermore, a new model has been developed which allows vessel 

permeability to vary depending on their maturity and local shear stress. The results demonstrate that the 

coupled angiogenesis and fluid flow model is able to capture the morphological and hemodynamic 

properties measured in real tumours.  Important results and findings obtained with the model are 

summarized below. 

1. Distributions of IFP on vessel surface and transvascular flux are heterogeneous with higher 

pressures and lower transvascular flux at the tumour center compared to the periphery. The 

Green’s function-based method applied in this study is able to predict IFP at the outer surface of 

individual vessels, allowing for more accurate estimations of IFP and transvascular flux whilst 

reducing the computational demand. 

 

2. Simulations of flow in different vascular geometries reveal the strong coupling and interplay 

between intravascular and interstitial flow. Whilst previous studies treating the vasculature as a 

uniformly distributed source term  found IFP to be uniformly elevated across the tumour, 

simulations using the coupled model developed in this work show that heterogeneous vascular 

distribution can result in non-uniformly elevated IFP, leading to non-uniform transvascular 

pressure gradients. As an important step in drug delivery, penetration of the drug through the 

vessel walls into the interstitial space is governed by the transmural pressure, hence 

heterogeneous transvascular pressure gradients can exacerbate the non-uniformity of drug 

accumulation in tumour tissue, resulting in low or no drug exposure in some regions.   

 

3. Analysis of flow in vascular networks with varying degrees of central necrosis reveal a dip in IFP 

within the tumour core where the extent of heterogeneity in IFP distribution increases with the 

degree of central necrosis. The presence of a necrotic core in tumours is common and has been  

associated with poor prognosis [279, 280]. Results obtained in this work suggest that the inward 

convective flux caused by pressure gradients in necrotic tumours can promote transport of 

therapeutic molecules towards the central region which is hypoxic and contains dead cells. This 

will reduce the availability of the drug to target actively proliferating cancer cells.  

 

4. Subtle changes in the vascular network by removing blind ends and incorporating arterio-venous 

shunts to open flow pathways result in pronounced increase in blood flow rate and a reduction in 
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IFP. This highlights that although vascular networks may appear almost identical from a 

macroscopic point of view as determined by their vascular density and microvascular distribution, 

small differences on a microscopic scale can result in dramatically altered flow properties. 

 

5. The incorporation of varying vascular permeability based on vessel maturity and local flow 

conditions using experimentally determined vessel pore sizes can result in significantly higher IFP 

values and more heterogeneous IFP distribution with larger gradients than originally predicted.    

6.1.2 Drug transport in solid tumours 

The spatial and temporal distributions of doxorubicin in tumour tissues are examined in Chapter 4. Fluid 

flow in tumours and the vascular architecture are important factors in determining the transport of 

intravenously injected therapeutics. Previous studies investigating the effectiveness of anticancer drugs 

mostly adopted PK compartmental models where the vasculature and tissue space were assumed to form 

compartments and drug concentration was averaged within each compartment. Other models that 

addressed the spatial distribution of chemotherapy drugs often neglect the heterogeneity of tumour 

vasculature and intravascular flow. Given the complexity of tumour tissues and vascular heterogeneity on 

a microscopic scale, steep gradients in drug concentration can occur on a spatial step of several microns. 

To address this challenge, the angiogenesis and fluid flow models developed in Chapter 3 have been 

coupled with a solute transport model to describe the spatial distribution of Doxorubicin within the 

microvessels, the interstitial space and its uptake by cells on a microscopic scale. The main findings and 

implications from this work are discussed as follows: 

1. Drug distribution within the vascular network varies as a function of intravascular blood flowrate 

which in turn is a function of the microscopic features of the tumour vascular network. Regions 

near well perfused vessels experience high extracellular drug concentration which rapidly decays 

with the distance from the vessel due to diffusion limitation and high intracellular uptake. 

2. Analysis of drug distributions in different vascular networks show that regions with equivalent 

microvascular densities exhibit significant differences in extracellular and intracellular 

concentrations due to differences in perfusion and intravascular flowrate, highlighting the 

importance of incorporating microscopic vascular properties and fluid dynamics when evaluating 

the effectiveness of chemotherapy drugs. The presence of blind ends, highly tortuous vessels and 

variations in blood vessel radius in tumours act together to reduce blood flow along some 
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pathways within the network, thereby limiting the delivery of the drug to these regions of the 

tumour tissue. 

3. Increasing drug dose reduces the heterogeneity in drug distribution in high MVD tumours. 

However, the same effect is not observed in tumours with a low MVD and large extravascular 

diffusion distance, where the effect of high dose is only to increase the level of plasma 

concentration which would lead to an increased risk of cardiotoxicity.  

4. Comparison of bolus injection and continuous infusion suggests that the latter helps to increase 

the peak intracellular concentration for infusion duration up to a certain point, with a 60-minute 

infusion time producing the highest peak intracellular concentration. Further increase in infusion 

duration causes the peak intracellular concentration to decrease, and a continuous infusion over 

200-minute results in concentrations lower than that with a bolus injection. The intracellular AUC 

over the domain shows higher values in regions near well perfused vessels with longer infusion 

duration. However, the heterogeneity in AUC also increases as the infusion increased.  

6.1.3 Imaging the 3D vasculature in whole human tumour tissues 

In Chapter 5,  two different imaging techniques are applied to human ovarian tumour samples in order to 

assess their ability to acquire images that can be used to visualise and extract the 3D vasculature from 

whole tumours on the order of cm. Whilst most imaging methods focus on animal models, the aim of 

chapter 5 is to explore methods that are able to image the vasculature in human tumours with high fidelity 

which can provide great insight into the morphology of the tumour vasculature and angiogenesis as the 

structure of the tissue is completely preserved. The tissue preparation protocol has been optimized for 

staining of wholes tissues on the order of mm to produce uniform signals across the tumour tissue. The 

Histocutter, an automated histology-based imaging set up, has been used to obtain a series of 2D images 

from which a 3D image of the tumour can be reconstructed. Although the Histocutter has shown 

considerable success in imaging hard tissues, it appears to have limited success when imaging soft tissues. 

The Histocutter uses a view and cut approach where the surface of the block is imaged after each cut to 

produce a series of 2D images. To exclusively image the surface of the block and block out light from 

deeper parts that could distort the 3D image, light absorbing Sudan dyes are mixed with the embedding 

medium. To ensure that the embedding medium is well mixed, high temperatures are required which can 

be harsh on soft tissues causing major shrinkage and distortion of the sample. Small distortions have also 

been observed in the alignment of the stacks and although this does not significantly affect the image of 

large structures, small vessels can become difficult to segment and extract. Another imaging method, 
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Optical projection tomography (OPT), has been investigated which offers the advantage of being 

applicable to larger samples on the order of cm whilst still maintaining high resolutions on the order of 

µm. The results show that OPT is able to produce high resolution images of the tumour vasculature which 

can be enhanced using image processing methods. Parameters that are often used to quantify 

angiogenesis, such as CD34 density and MVD, have been extracted on the whole tumour scale. The 

derived parameters are consistent with data extracted from relevant tumour studies. Images acquired 

with OPT can be used to quantify geometric properties of the tumour vasculature including vessel 

diameters, vessel surface area to tissue volume, length density and extravascular diffusion distance.  

The ability to image whole tumours on the order of centimetre with a high resolution on the micron scale 

in human tumour samples has not been previously demonstrated. The potential impact of this work is 

significant as quantifying angiogenic parameters on the whole tumour scale will reduce errors introduced 

using standard 2D image-based angiogenesis assessment techniques which only consider a small patch of 

tissue or a representative volume. As tumour tissues are extremely complex and heterogeneous, 

traditional 2D microscopy may not be able to capture the true heterogeneity. High resolution 3D methods 

overcome this limitation by providing a whole picture of the tumour which can be applied to optimize 

treatment methods and improve diagnostics. 

6.2 Limitations of current work 

6.2.1 Tumour geometry model 

The angiogenesis model used to describe the tumour vasculature in chapters 3 and 4 does well to capture 

the heterogeneous properties of the vasculature and incorporates various aspects of the angiogenesis 

process. In the model, the tumour is assumed to be of a fixed size and the effect of tumour growth during 

angiogenesis is neglected. This can be justified as the time scale on which tumour growth occurs is much 

larger than that of vascular growth. However, changes in oxygen concentration and gradients caused by 

vascular remodelling were not incorporated which can influence the distribution of chemical species 

secreted which would in turn influence the angiogenic process and vascular network generated. 

Mechanical forces such as solid stress induced by the growing tumour can affect the movement of 

endothelial cells which has not been incorporated in the angiogenesis model [73]. The stress caused by 

proliferating cancer cells can compress and shut down the function of some vessels. These factors could 
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influence the spatial arrangement and orientation of the vascular networks produced [41]. These 

limitations were not addressed in the current study so as to keep the model computationally tractable.  

6.2.2 Fluid Flow model 

In chapter 3 where fluid flow in the vascular geometry and tumour tissue was analysed, blood  was 

modelled as a continuum Newtonian fluid with a constant viscosity. Blood is in fact a non-Newtonian fluid 

composed of multiple cellular components such as red blood cells, white bloods cells and platelets. In 

small capillaries the influence of these components can be significant. Spatial and time variations in these 

components can results in variable viscosity within the vessel network. Phase separation in bifurcations 

can occur in tumour vasculature where the haematocrit level can be higher in one branch than the others, 

results in different blood viscosities in different vessel segments. Additionally, the response of vessel 

diameter to changes in transmural pressure and metabolic stimuli has been neglected. Current models 

that incorporate these changes are developed using data obtained from vessel networks in normal tissues 

[169, 281]. Tumours exhibit a different functional behaviour and would be expected to respond 

differently. When considering interstitial flow, the tissue was assumed to be composed of a homogenous 

porous medium made up of cancer cells and extracellular matrix. In reality, tumour tissue can be 

heterogeneous with varying porosity and interstitial hydraulic conductivity which consequently affect 

fluid flow. Studies have been performed assessing the role of heterogeneous tissue characteristics on fluid 

flow and solute transport within the tissue. Incorporating this in tumours on a large scale will raise the 

computational demand of the simulation significantly. The present study was focused on investigating the 

role of heterogeneous tumour vasculature alone, so that heterogeneity in tissue properties has been 

ignored. Nevertheless, further research can be built on this model and to incorporate tissue heterogeneity 

as computation power increases. In tumours, lymphatic function is poor which combined with the lack of 

models addressing the formation and development of lymph vessels has not been included in the present 

study. 

6.2.3 Drug transport model 

In chapter 4 when modelling drug transport, the effect of binding was not incorporated however for 

doxorubicin this can be easily achieved given that binding is non saturable. The uptake of the drug by the 

cells affects its distribution and ability to penetrate the tissue. Whilst cancer cells were assumed to be 

uniformly distributed, the reality of heterogeneous cell distribution can lead to variable results from case 
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to case.  Additionally, the uptake and efflux were modelled as a function of passive diffusion using data 

obtained for non-small cell lung carcinomas that were selected not to be resistant. For cancer cells with 

developed resistance the efflux through active transport by P-glycoprotein (P-gp) and/or by multidrug 

resistance protein (MRP1) needs to be considered. Whilst in chapter 3, it was possible to model large 

volume tumours, the time-dependent nature of drug transport substantially increases the computational 

demand, thereby restricting the size of tissue and vessels to be examined. However, provided enough 

time and computational power this can be achieved.  

6.2.4 Tumour imaging  

In chapter 5, the feasibility of analysing and assessing angiogenesis parameters on the whole tumour scale 

was explored. The tumour sample size was limited, and normal tissue samples should have been tested 

for reference when analysing the role of CD34 density and MVD in tumour tissue. The segmentation of 

the vasculature presents another problem. Manual segmentation is not feasible for large data sets as in 

our case. Whilst a large number of automated vascular segmentation algorithms have been developed, 

they are most applicable to angiography imaging techniques using modalities such as MRI and CT/µCT 

[260]. In these methods blood pool contrast agents are used to label the vessel lumen, the vessels then 

appear as a set of solid tubes which can be segmented and its centreline easily extracted using established 

methods [282]. In our case the vessels’ laminae are labelled using molecular techniques which can result 

in uneven staining, low contrast, gaps on the vessel surface and autofluorescence. In addition, the vessels 

can appear as hollow tubes for which there are a limited number to segment and extract the vessel 

centreline. In this work large hollow vessels can be seen as multiple vessels when employing the 

skeletonization algorithm, resulting in some errors in the extraction of vessels centreline.  

6.3 Perspectives for future work 

It is evident that tumour microvascular properties have a significant influence on fluid flow and drug 

transport in solid tumours. The aim of computational based biological studies is to aid and complement 

experiment-based methods in tackling cancer. The advantage of these methods is that various aspects of 

the biology of tumours can be incorporated. Several promising directions can be followed based on the 

work of this thesis. 
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6.3.1 Oxygen transport  

Hypoxia plays an important role in tumour development and resistance of cells to radiotherapy and 

chemotherapy [283, 284]. The transport and distribution of oxygen in tumours can be studied using the 

models applied in chapters 3 and 4. As described from the findings in this work, the assumption of drug 

distribution within the tissue being simply limited to the distance from the vessels is an oversimplification. 

Subtle features and changes in the vasculature can result in drastic differences in blood flow which 

consequently affects oxygen transport. Chemotherapeutics act by inhibiting DNA replication; therefore, 

as cells in poorly oxygenated regions are proliferating at slower rates, the effectiveness of 

chemotherapeutics is likely to be limited in these regions. Coupling oxygen transport with the transport 

of chemotherapeutics can provide better insight into their effectiveness.  

6.3.2 Incorporate simulation of liposomes and nanoparticles in tumour tissues 

Liposomes and nanoparticles provide an effective means to transport chemotherapeutics by reducing 

clearance and cardiotoxicity by targeting the pores sizes of the tumour vasculature through the enhanced 

permeability and retention effect (EPR) [285] [286]. The models used in chapters 3 and 4 can be readily 

applied to simulate the transport of these nanoparticles. Drug release from the liposomes can be 

incorporated as a source term provided that the data on drug release rate is available. The effect of 

heating on liposomal delivery release can also be investigated and can be used to complement 

experimental studies on liposome and thermosensitive liposome uptake in tumours, providing a 

microscopic view of their performance. 

6.3.3 Incorporate real imaged vasculature into fluid flow and drug transport studies 

The imaged vasculature from ovarian tumours presented in Chapter 5 can be segmented and a spatial 

graph can be generated from it as shown in figure 5.21. This network can be used as an input for the 

vascular geometry in the fluid flow and drug transport models applied in chapters 3 and 4 to understand 

the consequence of the vasculature on fluid flow and drug transport in real cases. The future works 

suggested above can also be applied using this vascular geometry to assess hypoxia and the performance 

of various treatment strategies in realistic tumour vasculature.   
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6.3.4 Assessing the prognostic value of angiogenesis in ovarian tumours 

As discussed in chapter 2, angiogenesis plays a role in tumour growth, invasion and promoting its ability 

to limit the transport and distribution of anticancer therapeutics. Angiogenesis has been shown to be a 

strong prognostic factor in different types of tumours [287, 288]. However, in ovarian tumours the 

prognostic significance of angiogenesis remains unresolved as a number of different studies have 

produced conflicting results. One of the limitations of these studies was the limited area over which 

angiogenesis was assessed and the use of methods that can introduce bias. The methodology developed 

in chapter 5 allows for angiogenesis to be assessed over large areas and the automated method used to 

segment and measure the distribution of CD34 and the vasculature can reduce potential bias associated 

with manual microvessel counting techniques.  

6.3.5 Mapping of tumour microenvironment on the whole tumour scale and assessing influence 

of microvasculature on distribution various tumour cells 

Tumours can be extremely complex with heterogeneous cell populations that exhibit distinct 

morphological and phenotypic profiles. This intratumoural heterogeneity has been well documented 

which can lead to an increase in the chances of therapeutic resistance [289]. Developing a 3D 

understanding of this heterogeneity can provide better understanding of both intratumoural and 

intertumoural heterogeneity. The OPT method applied in chapter 5 can be modified and built on to stain 

different types of cells which can be imaged using multichannel OPT, hence different cells can be imaged 

and the vasculature and its relationship to the heterogeneity of the different cell populations can be 

examined.  
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Appendix A    Supplementary information  
 

A.1 Tumour induced angiogenesis model 
 

A set of probability coefficients were calculated which represent the potential movement of endothelial 

cells in a certain direction where P0 is the probability of no movement, and P1 ~ P6  represent the 

probability of movement in six directions along the x,y and z axis. The coefficients were calculated as 

follows: 
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The parameters used in the angiogenesis model are as follows. 

Table A.1 Dimensionless parameters in model  

Dimensionless 
parameter 

Description Value 

𝐷 Endothelial cell diffusion 
coefficient 

0.00035 

𝜒 Chemotactic coefficient 0.38 

𝜌 Hapotactic coefficient 0.34 

𝛽 Fibronectin production 
rate 

0.05 

𝛾 Fibronectin consumption 
rate 

0.1 

𝜂 TAF consumption rate  0.1 

𝜑 Threshold branching age 0.5 
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