3 research outputs found

    Fourier Growth of Regular Branching Programs

    Get PDF
    We analyze the Fourier growth, i.e. the L? Fourier weight at level k (denoted L_{1,k}), of read-once regular branching programs. We prove that every read-once regular branching program B of width w ? [1,?] with s accepting states on n-bit inputs must have its L_{1,k} bounded by min{Pr[B(U_n) = 1](w-1)^k, s ? O((n log n)/k)^{(k-1)/2}}. For any constant k, our result is tight up to constant factors for the AND function on w-1 bits, and is tight up to polylogarithmic factors for unbounded width programs. In particular, for k = 1 we have L_{1,1}(B) ? s, with no dependence on the width w of the program. Our result gives new bounds on the coin problem and new pseudorandom generators (PRGs). Furthermore, we obtain an explicit generator for unordered permutation branching programs of unbounded width with a constant factor stretch, where no PRG was previously known. Applying a composition theorem of B?asiok, Ivanov, Jin, Lee, Servedio and Viola (RANDOM 2021), we extend our results to "generalized group products," a generalization of modular sums and product tests

    Fourier Bounds and Pseudorandom Generators for Product Tests

    Get PDF
    We study the Fourier spectrum of functions f : {0,1}^{mk} -> {-1,0,1} which can be written as a product of k Boolean functions f_i on disjoint m-bit inputs. We prove that for every positive integer d, sum_{S subseteq [mk]: |S|=d} |hat{f_S}| = O(min{m, sqrt{m log(2k)}})^d . Our upper bounds are tight up to a constant factor in the O(*). Our proof uses Schur-convexity, and builds on a new "level-d inequality" that bounds above sum_{|S|=d} hat{f_S}^2 for any [0,1]-valued function f in terms of its expectation, which may be of independent interest. As a result, we construct pseudorandom generators for such functions with seed length O~(m + log(k/epsilon)), which is optimal up to polynomial factors in log m, log log k and log log(1/epsilon). Our generator in particular works for the well-studied class of combinatorial rectangles, where in addition we allow the bits to be read in any order. Even for this special case, previous generators have an extra O~(log(1/epsilon)) factor in their seed lengths. We also extend our results to functions f_i whose range is [-1,1]
    corecore