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Abstract
We study the Fourier spectrum of functions f : {0, 1}mk → {−1, 0, 1} which can be written as a
product of k Boolean functions fi on disjoint m-bit inputs. We prove that for every positive integer d,∑

S⊆[mk]:|S|=d

|f̂S | = O
(
min{m,

√
m log(2k)}

)d
.

Our upper bounds are tight up to a constant factor in the O(·). Our proof uses Schur-convexity, and
builds on a new “level-d inequality” that bounds above

∑
|S|=d

f̂S
2 for any [0, 1]-valued function f

in terms of its expectation, which may be of independent interest.
As a result, we construct pseudorandom generators for such functions with seed length Õ(m+

log(k/ε)), which is optimal up to polynomial factors in logm, log log k and log log(1/ε). Our
generator in particular works for the well-studied class of combinatorial rectangles, where in addition
we allow the bits to be read in any order. Even for this special case, previous generators have an
extra Õ(log(1/ε)) factor in their seed lengths.

We also extend our results to functions fi whose range is [−1, 1].
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1 Introduction

In this paper we study tests on n bits which can be written as a product of k bounded
real-valued functions defined on disjoint inputs of m bits. We first define them formally.

I Definition 1 (Product tests). A function f : {0, 1}n → [−1, 1] is a product test with k
functions of input length m if there exist k disjoint subsets I1, I2, . . . , Ik ⊆ {1, 2, . . . , n} of
size ≤ m such that f(x) =

∏
i≤k fi(xIi) for some functions fi with range in [−1, 1]. Here

xIi
are the |Ii| bits of x indexed by Ii.
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7:2 Fourier Bounds and Pseudorandom Generators for Product Tests

More generally, the range of each function fi can be C≤1 := {z ∈ C : |z| ≤ 1}, the
complex unit disk [22, 26], or the set of square matrices over a field [44]. However, in this
paper we only focus on the range [−1, 1]. As we will soon explain, our results do not hold for
the broader range of C≤1.

The class of product tests was first introduced by Gopalan, Kane and Meka under the
name of Fourier shapes [22]. However, in their definition, the subsets Ii are fixed. Motivated
by the recent constructions of pseudorandom generators against unordered tests, which are
tests that read input bits in arbitrary order [8, 28, 44, 50], Haramaty, Lee and Viola [26]
considered the generalization in which the subsets Ii can be arbitrary as long as they are of
bounded size and pairwise disjoint.

Product tests generalize several restricted classes of tests. For example, when the range of
the functions fi is {0, 1}, product tests correspond to the AND of disjoint Boolean functions,
also known as the well-studied class of combinatorial rectangles [4, 40, 41, 30, 20, 7, 36, 56,
23, 25]. When the range of the fi is {−1, 1}, they correspond to the XOR of disjoint Boolean
functions, also known as the class of combinatorial checkerboards [57]. More importantly,
product tests also capture read-once space computation. Specifically, Reingold, Steinke and
Vadhan [44] showed that the class of read-once width-w branching programs can be encoded
as product tests with outputs {0, 1}w×w, the set of w × w Boolean matrices.

In the past year, the study of product tests [26, 33] has found applications in con-
structing state-of-the-art pseudorandom generators (PRGs) for space-bounded algorithms.
Using ideas in [23, 25, 33, 14], Meka, Reingold and Tal [38] constructed a pseudorandom
generator for width-3 read-once branching programs (ROBPs) on n bits with seed length
Õ(logn log(1/ε)), giving the first improvement of Nisan’s generator [40] in the 90s. Building
on [44, 26, 14], Forbes and Kelley significantly simplified the analysis of [38] and constructed
a generator that fools unordered polynomial-width read-once branching programs. Thus,
it is motivating to further study product tests, in the hope of gaining more insights into
constructing better generators for space-bounded algorithms, and resolving the long-standing
open problem of RL vs. L.

In this paper we are interested in understanding the Fourier spectrum of product tests.
We first define the Fourier weight of a function. For a function f : {0, 1}n → R, consider its
Fourier expansion f =

∑
S⊆[n] f̂SχS .

I Definition 2 (dth level Fourier weight in Lq-norm). Let f : {0, 1}n → C≤1 be any function.
The dth level Fourier weight of f in Lq-norm is

Wq,d[f ] :=
∑
|S|=d

|f̂S |q.

We denote by Wq,≤d[f ] the sum
∑d
`=0Wq,`[f ].

Several papers have studied the Fourier spectrum of different classes of tests. This
includes constant-depth circuits [37, 51], read-once branching programs [44, 50, 14], and
low-sensitivity functions [24]. More specifically, these papers showed that they have bounded
L1 Fourier tail, that is, there exists a positive number b such that for every test f in the
class and every positive integer d, we have

W1,d[f ] ≤ bd.

One technical contribution of this paper is giving tight upper and lower bounds on the L1
Fourier tail of product tests.
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I Theorem 3. Let f : {0, 1}n → [−1, 1] be a product test of k functions f1, . . . , fk with input
length m. Suppose there is a constant c > 0 such that |E[fi]| ≤ 1− 2−cm for every fi. For
every positive integer d, we have

W1,d[f ] ≤
(
72(
√
c ·m)

)d
.

Theorem 3 applies to Boolean functions fi with outputs {0, 1} or {−1, 1}, for which we
know a bound on c. Moreover, the parity function on mk bits can be written as a product
test with outputs {−1, 1}, which has f̂[mk] = 1. So product tests do not have non-trivial L2
Fourier tail. (See [51] for a definition.)

We also obtain a different upper bound when the fi are arbitrary [−1, 1]-valued functions.

I Theorem 4. Let f : {0, 1}n → [−1, 1] be a product test of k functions f1, . . . , fk with input
length m. Let d be a positive integer. We have

W1,d[f ] ≤
(
85
√
m ln(4ek)

)d
.

We note that Theorems 3 and 4 are incomparable, as one can take m = 1 and k = n, or
m = n and k = 1.

B Claim 5. For all positive integers m and d, there exists a product test f : {0, 1}mk → {0, 1}
with k = d · 2m functions of input length m such that

W1,d[f ] ≥ (m/e3/2)d.

This matches the upper bound W1,d[f ] = O(m)d in Theorem 3 up to the constant in
the O(·). Moreover, applying Theorem 4 to the product test f in Claim 5 gives W1,d[f ] =
O(
√
m log(2k))d = O(m +

√
m log d)d. Therefore, for all integers m and d ≤ 2O(m), there

exists an integer k and a product test f such that the upper boundW1,d[f ] = O(
√
m log(2k))d

is tight up to the constant in the O(·).
We now discuss some applications of Theorems 3 and 4 in pseudorandomness.

Pseudorandom generators

In recent years, researchers have developed new frameworks to construct pseudorandom
generators against different classes of tests. Gopalan, Meka, Reingold, Trevisan and Vad-
han [23] refined a framework introduced by Ajtai and Wigderson [5] to construct better
generators for the classes of combinatorial rectangles and read-once DNFs. Since then, this
framework has been used extensively to construct new PRGs against different classes of
tests [53, 22, 25, 44, 50, 15, 26, 27, 46, 33, 14, 21, 38, 19]. Recently, a beautiful work by
Chattopadhyay, Hatami, Hosseini and Lovett [12] developed a new framework of constructing
PRGs against any classes of functions that are closed under restriction and have bounded L1
Fourier tail. Thus, applying their result to Theorems 3 and 4, we can immediately obtain a
non-trivial PRG for product tests. However, using the recent result of Forbes and Kelley [21]
and exploiting the structure of product tests, we use the Ajtai–Wigderson framework to
construct PRGs with much better seed length than using [12] as a blackbox.

I Theorem 6. There exists an explicit generator G : {0, 1}` → {0, 1}n that fools the XOR
of any k Boolean functions on disjoint inputs of length ≤ m with error ε and seed length
O(m+ log(n/ε))(logm+ log log(n/ε))2 = Õ(m+ log(n/ε)).

CCC 2019



7:4 Fourier Bounds and Pseudorandom Generators for Product Tests

Here Õ(1) hides polynomial factors in logm, log log k, log logn and log log(1/ε). When
mk = n or ε = n−Ω(1), the generator in Theorem 6 has seed length Õ(m+ log(k/ε)), which
is optimal up to Õ(1) factors.

We now compare Theorem 6 with previous works. Using a completely different analysis,
Lee and Viola [33] obtained a generator with seed length Õ((m + log k)) log(1/ε). When
m = O(logn) and k = 1/ε = nΩ(1), this is Õ(log2 n), whereas the generator in Theorem 6
has seed length Õ(logn). When each function fi is computable by a read-once width-w
branching program on m bits, Meka, Reingold and Tal [38] obtained a PRG with seed
length O(log(n/ε))(logm+ log log(n/ε))2w+2. When m = O(log(n/ε)), Theorem 6 improves
on their generator on the lower order terms. As a result, we obtain a PRG for read-once
F2-polynomials, which are a sum of monomials on disjoint variables over F2, with seed length
O(logn/ε)(log log(n/ε))2. This also improves on the seed length of their PRG for read-once
polynomials in the lower order terms by a factor of (log log(n/ε))4.

Our generator in Theorem 6 also works for the AND of the functions fi, corresponding
to the class of unordered combinatorial rectangles. Previous generators [11, 17] use almost-
bounded independence or small-bias distributions, and have seed length O(log(n/ε))(1/ε).
While several papers [36, 56, 23, 25, 22] have improved the seed length for this model in the
fixed order setting, our generator is the first improvement for the unordered setting and has
nearly-optimal seed length. In fact, we have the following more general corollary.

I Corollary 7. There exists an explicit pseudorandom generator G : {0, 1}` → {0, 1}n with
seed length Õ(m+log(n/ε)) such that the following holds. Let f1, . . . , fk : {0, 1}Ii → {0, 1} be
k Boolean functions where the subsets Ii ⊆ [n] are pairwise disjoint and have size at most m.
Let g : {0, 1}k → C≤1 be any function and write g in its Fourier expansion g =

∑
S⊆[k] ĝSχS.

Then G fools g(f1, . . . , fk) with error L1[g] · ε, where L1[g] :=
∑
S 6=∅|ĝS |.

Proof. Let G be the generator in Theorem 6. Note that χS(f1(xI1), . . . , fk(xIk
)) is a product

test with outputs {−1, 1}. So by Theorem 6 we have∣∣E[g(f1(UI1), . . . , fk(UIk
))− E[g(f1(GI1), . . . , fk(GIk

)]
∣∣

≤
∑
S

|ĝS |
∣∣E[χS(f1(UI1), . . . , fk(UIk

))]− E[χS(f1(GI1), . . . , fk(GIk
)]
∣∣

≤ L1[g] · ε. J

Note that the AND function has L1[AND] ≤ 1, and so the generator in Corollary 7 fools
unordered combinatorial rectangles.

When the functions fi in the product tests have outputs [−1, 1], we also obtain the
following generator.

I Theorem 8. There exists an explicit generator G : {0, 1}` → {0, 1}n that fools any prod-
uct test with k functions of input length m with error ε and seed length O(logmk)((m +
log(k/ε))(logm+ log log(k/ε)) + log logn) = Õ(m+ log(k/ε)) log k.

When m = o(logn) and k = 1/ε = 2o(
√

logn), Theorem 8 gives a better seed length than
Theorem 6. Thus the generator in Theorem 8 remains interesting for fi ∈ {−1, 1} when a
product test f depends on very few variables and the error ε is not so small.

Previous best generator [33] has an extra Õ(log(1/ε)) in the seed length. However, the
generator in [33] works even when the fi have range C≤1, which implies generators for several
variants of product tests such as generalized halfspaces and combinatorial shapes. (See [22]
for the reductions.)



C.H. Lee 7:5

Finally, when the subsets Ii of a product test are fixed and known in advanced, Gopalan,
Kane and Meka [22] constructed a PRG of the same seed length as Theorem 6, but again
their PRG works more generally for the range of C≤1 instead of {−1, 1}.

F2-polynomials

Chattopadhyay, Hatami, Lovett and Tal [13] recently constructed a pseudorandom generator
for any class of functions that are closed under restriction, provided there is an upper bound
on the second level Fourier weight of the functions in L1-norm. They conjectured that every
n-variate F2-polynomial f of degree d satisfies the bound W1,2[f ] = O(d2). In particular, a
bound of n1/2−o(1) would already imply a generator for polynomials of degree d = Ω(logn),
a major breakthrough in complexity theory. Theorem 4 shows that their conjecture is true
for the special case of read-once polynomials. In fact, it shows that W1,t[f ] = O(dt) for every
positive integer t. Previous bound for read-once polynomials gives W1,t[f ] = O(log4 n)t [14].

The coin problem

Let Xn,ε = (X1, . . . , Xn) be the distribution over n bits, where the variables Xi are indepen-
dent and each Xi equals 1 with probability (1− ε)/2 and 0 otherwise. The ε-coin problem
asks whether a given function f can distinguish between the distributions Xn,ε and Xn,0
with advantage 1/3.

This central problem has wide range of applications in computational complexity and
has been studied extensively for different restricted classes of tests, including bounded-depth
circuits [2, 54, 3, 6, 55, 47, 1, 56, 16], space-bounded algorithms [9, 49, 16], bounded-depth
circuits with parity gates [47, 32, 45, 35], F2-polynomials [35, 13] and product tests [34].

It is known that if a function f has bounded L1 Fourier tail, then it implies a lower bound
on the smallest ε∗ of ε that f can solve the ε-coin problem.

I Fact 9. Let f : {0, 1}n → C≤1 be any function. If for every integer d ∈ {0, . . . , n} we have
W1,d[f ] ≤ bd, then f solves the ε-coin problem with advantage at most 2bε.

Proof. We may assume bε ≤ 1/2, otherwise the result is trivial. Observe that we have
E[χS(Xn,ε)] = ε|S| for every subset S ⊆ [n]. Thus,∣∣E[f(Xn,ε)]− E[f(Xn,0)]

∣∣ =
∣∣∣∑
S 6=∅

f̂S E[Xn,ε]
∣∣∣

≤
n∑
d=1

∑
|S|=d

|f̂S | · εd =
n∑
d=1

(bε)d ≤ bε ·
n∑
d=1

2−(d−1) ≤ 2bε. J

Lee and Viola [34] showed that product tests with range [−1, 1] can solve the ε-coin
problem with ε∗ = Θ(1/

√
m log k). Hence, Fact 9 implies that Theorem 4 recovers their lower

bound. Moreover, their upper bound implies that the dependence on m and k in Theorem 4
is tight up to constant factors when d is constant. Claim 5 complements this by showing
that the dependence on d in Theorem 4 is also tight for some choice of k.

The work [34] also shows that when the range of the functions fi is C≤1, the right answer
for ε∗ is Θ(1/

√
mk). Therefore, one cannot hope for a better tail bound than the trivial

bound of (
√
mk)d when the range is C≤1.

1.1 Techniques
We now explain how to obtain Theorems 3 and 4 and our pseudorandom generators for
product tests (Theorems 6 and 8).

CCC 2019



7:6 Fourier Bounds and Pseudorandom Generators for Product Tests

1.1.1 Fourier spectrum of product tests
The high-level idea of proving Theorems 3 and 4 is inspired from [34]. For intuition, let us
first assume that the functions fi have outputs {0, 1} and are all equal to f1 (but defined
on disjoint inputs). It will also be useful to think of the number of functions k being much
larger than input length m of each function. We first explain how to bound above W1,1[f ].
(Recall in Definition 2 we defined Wq,d[f ] of a function f to be

∑
|S|=d|f̂S |q.)

Bounding W1,1[f ]

Since the functions fi of a product test f are defined on disjoint inputs, each Fourier coefficient
of f is a product of the coefficients of the fi, and so each weight-1 coefficent of f is a product
of k − 1 weight-0 and 1 weight-1 coefficients of the fi. From this, we can see that W1,1[f ] is
equal to(

k

1

)
·W1,1[f1] ·W1,0[f1]k−1 = k ·W1,1[f1] · E[f1]k−1. (1)

Because of the term E[f1]k−1, to maximize W1,1[f ] it is natural to consider taking f1 to be a
function with expectation E[f1] as close to 1 as possible, i.e. the OR function. In such case,
one would hope for a better bound on W1,1[f1]. Indeed, Chang’s inequality [10] (see also [29]
for a simple proof) says that for a [0, 1]-valued function g with expectation α ≤ 1/2, we have

W2,1[g] ≤ 2α2 ln(1/α).

(The condition α ≤ 1/2 is without loss of generality as one can instead consider 1−g.) It follows
by a simple application of the Cauchy–Schwarz inequality that W1,1[g] ≤ O(

√
n) ·α

√
ln(1/α)

(see Fact 12 below for a proof). Moreover, when the functions fi are Boolean, we have
2−m ≤ E[fi] ≤ 1− 2−m, and so

√
ln(1/α) ≤

√
m. Plugging these bounds into Equation (1),

we obtain a bound of O(m) · k(1−E[f1])E[f1]k−1. So indeed E[f1] should be roughly 1− 1/k
in order to maximize W1,1[f ], giving an upper bound of O(m). For the case where the fi
can be different, a simple convexity argument shows that W1,1[f ] is maximized when the
functions fi have the same expectation.

Bounding W1,d[f ] for d > 1

To extend this argument to d > 1, one has to generalize Chang’s inequality to bound
above W2,d[g] for d > 1. The case d = 2 was already proved by Talagrand [52]. Following
Talagrand’s argument in [52] and inspired by the work of Keller and Kindler [31], which
proved a similar bound in terms of a different measure than E[g], we prove the following
bound on W2,d[g] in terms of its expectation.

I Lemma 10. Let g : {0, 1}n → [0, 1] be any function. For every positive integer d, we have

W2,d[g] ≤ 4E[g]2
(
2e ln(e/E[g]1/d)

)d
.

We note that the exponent 1/d of E[g] either did not appear in previous upper bounds
(mentioned without proof in [29]), or only holds for restricted values of d [42]. This exponent
is not important for proving Theorem 3 , but will be crucial in the proof of Theorem 4, which
we will explain later on.

For d > 1, the expression for W1,d[f ] becomes much more complicated than W1,1[f ], as it
involves W1,z[f1] for different values of z ∈ [m]. So one has to formulate the expression of
W1,d[f ] carefully (see Lemma 13). Once we have obtained the right expression for W1,d[f ],
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the proof of Theorem 3 follows the outline above by replacing Chang’s inequality with
Lemma 10. One can then handle functions fi with outputs {−1, 1} by considering the
translation fi 7→ (1 − fi)/2, which only changes each W1,d[fi] (for d > 0) by a factor of 2.
We remark that Theorem 3 is sufficient for constructing the generator in Theorem 6.

Handling [−1, 1]-valued fi

Extending this argument to proving Theorem 4 poses several challenges. Following the
outline above, after plugging in Lemma 10, we would like to show that E[f1] should be
roughly 1− 1/k to maximize W1,d[f ]. However, it is no longer clear why this is the case even
assuming the maximum is attained by functions fi with the same expectation, as we now do
not have the bound

√
ln(1/α) ≤

√
m, and so it cannot be used to simplify the expression

of W1,d[f ] as before. In fact, the above assumption is simply false if we plug in the upper
bound in Lemma 10 with the exponent 1/d omitted to the W1,zi [fi].

Using Lemma 10 and the symmetry of the expression for W1,d[f ], we reduce the problem
of bounding above W1,d[f ] with different fi to bounding the same quantity but with the
additional assumption that the fi have the same expectation E[f1]. This uses Schur-convexity
(see Section 2 for its definition). Then by another convexity argument we show that the
maximum is attained when E[f1] is roughly equal to 1 − d/k. Both of these arguments
critically rely on the aforementioned exponent of 1/d in Lemma 10.

1.1.2 Pseudorandom generators
We now discuss how to use Theorems 3 and 4 to construct our pseudorandom generators for
product tests. Our construction follows the Ajtai–Wigderson framework [5] that was recently
revived and refined by Gopalan, Meka, Reingold, Trevisan and Vadhan [23].

The high-level idea of this framework involves two steps. For the first step, we show
that derandomized bounded independence plus noise fools f . More precisely, we will show
that if we start with a small-bias or almost-bounded independent distribution D (“bounded
independence”), and select roughly half of D’s positions T pseudorandomly and set them to
uniform U (“plus noise”), then this distribution, denoted by D + T ∧ U , fools product tests.

Forbes and Kelley [21] recently improved the analysis in [26] and implicitly showed that
δ-almost d-wise independent plus noise fools product tests, where d = O(m+ log(k/ε)) and
δ = n−Ω(d). Using Theorem 4, we improve the dependence on δ to (m ln k)−Ω(d) and obtain
the following theorem.

I Theorem 11. Let f : {0, 1}n → [−1, 1] be a product test with k functions of input length
m. Let d be a positive integer. Let D and T be two independent δ-almost d-wise independent
distributions over {0, 1}n, and U be the uniform distribution over {0, 1}n. Then∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣ ≤ k · (√δ · (170 ·
√
m ln(ek))d + 2−(d−m)/2),

where “+” and “∧” are bit-wise XOR and AND respectively.

The second step of the Ajtai–Wigderson framework builds a pseudorandom generator
by applying the first step (Theorem 11) recursively. Let f : {0, 1}n → {0, 1} be a product
test with k functions of input length m. As product tests are closed under restrictions (and
shifts), after applying Theorem 11 to f and fixing D and T in the theorem, the function
fD,T : {0, 1}T → {0, 1} defined by fD,T (y) := f(D + T ∧ y) is also a product test. Thus
one can apply Theorem 11 to fD,T again and repeat the argument recursively. We will use
different progress measures to bound above the number of recursion steps in our constructions.
We first describe the recursion in Theorem 8 as it is simpler.

CCC 2019



7:8 Fourier Bounds and Pseudorandom Generators for Product Tests

Fooling [−1, 1]-valued product tests

Here our progress measure is the number of bits that are defined by the product test f .
We show that after O(log(mk)) steps of the recursion, the restricted product test is defined
on at most O(m + log(k/ε)) bits with high probability, which can then be fooled by an
almost-bounded independent distribution. This simple recursion gives our second PRG
(Theorem 8).

Fooling Boolean-valued product tests

Our construction of the first generator (Theorem 6) is more complicated and uses two
progress measures. The first one is the maximum input length m of the functions fi, and
the second is the number k of the functions fi. We reduce the number of recursion steps
from O(log(k/ε)) logm to O(logm). This requires a more delicate construction and analysis
that are similar to the recent work of Meka, Reingold and Tal [38], which constructed
a pseudorandom generator against XOR of disjoint constant-width read-once branching
programs. There are two main ideas in their construction. First, they ensure k ≤ 16m in each
step of the recursion, by constructing another PRG to fool the test f for the case k ≥ 16m.
We will also use this PRG in our construction. Next, throughout the recursion they allow
one “bad” function fi of the product test f to have a longer input length than m, but not
longer than O(log(n/ε)). Using these two ideas, they show that whenever m ≥ log logn
during the recursion, then after O(1) steps of the recursion all but the “bad” fi have their
input length restricted by a half, while the “bad” fi always has length O(log(n/ε)). This
allows us to repeat O(logm) steps until we are left with a product test of k′ ≤ polylog(n)
functions, where all but one of the fi have input length at most m′ = O(log logn).

Now we switch our progress measure to the number of functions. This part is different
from [38], in which their construction relies on the fact that the fi are computable by
read-once branching programs. Here because our functions fi are arbitrary, by grouping
c functions as one, we can instead think of the parameters k′ and m′ in the product test
as k′′ = k′/c and m′′ = cm′, respectively. Choosing c to be O(logn/ log logn), we have
m′′ = O(logn) and so we can repeat the previous argument again. Because each time k′ is
reduced by a factor of c, after repeating this for O(1) steps, we are left with a product test
defined on O(logn) bits, which can be fooled using a small-bias distribution. This gives our
first generator (Theorem 6).

Organization

In Section 2 we prove Theorems 3 and 4. In Section 3 we construct our pseudorandom
generators for product tests, proving Theorems 6 and 8. In Section 4 we prove Lemma 10,
which is used in the proof of Theorem 4.

2 Fourier spectrum of product tests

In this section we prove Theorems 3 and 4. We first restate the theorems.

I Theorem 3. Let f : {0, 1}n → [−1, 1] be a product test of k functions f1, . . . , fk with input
length m. Suppose there is a constant c > 0 such that |E[fi]| ≤ 1− 2−cm for every fi. For
every positive integer d, we have

W1,d[f ] ≤
(
72(
√
c ·m)

)d
.
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I Theorem 4. Let f : {0, 1}n → [−1, 1] be a product test of k functions f1, . . . , fk with input
length m. Let d be a positive integer. We have

W1,d[f ] ≤
(
85
√
m ln(4ek)

)d
.

Both theorems rely on the following lemma which gives an upper bound on W2,d[g] in
terms of the expectation of a [0, 1]-valued function g. The case d = 1 is known as Chang’s
inequality [10]. (See also [29] for a simple proof.) This was then generalized by Talagrand to
d = 2 [52]. Using a similar argument to [52], we extend this to d > 2.

I Lemma 10. Let g : {0, 1}n → [0, 1] be any function. For every positive integer d, we have

W2,d[g] ≤ 4E[g]2
(
2e ln(e/E[g]1/d)

)d
.

We defer its proof to Section 4. We remark that a similar upper bound was proved by
Keller and Kindler [31]. However, the upper bound in [31] was proved in terms of

∑n
i=1 Ii[g]2,

where Ii[g] is the influence of the ith coordinate on g, instead of E[g]. A similar upper bound
in terms of E[g] can be found in [42] under the extra condition d ≤ 2 ln(1/E[g]).

We will also use the following well-known fact that bounds above W1,d[f ] in terms of
W2,d[f ].

I Fact 12. Let f : {0, 1}n → R be any function. We have W1,d[f ] ≤ nd/2
√
W2,d[f ].

Proof. By the Cauchy–Schwarz inequality,

W1,d[f ] =
∑
|S|=d

|f̂S | ≤

√√√√(n
d

) ∑
|S|=d

f̂2
S ≤ n

d/2
√
W2,d[f ]. J

I Lemma 13. Let f : {0, 1}n → [−1, 1] be a product test of k functions f1, . . . , fk with input
length m, and αi := (1− E[fi])/2 for every i ∈ [k]. Let d be a positive integer. We have

W1,d[f ] ≤
(√

32e3m
)d
g(α1, . . . , αk),

where the function g : (0, 1]k → R is defined by

g(α1, . . . , αk) := e−2
∑k

i=1
αi

d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

∏
i∈S

(
αi
(

ln
(
e/α

1/zi

i

))zi/2
)
.

Proof. For notational simplicity, we will use Wd[f ] to denote W1,d[f ]. Write f =
∏k
i=1 fi.

Without loss of generality we will assume each function fi is non-constant. Since fi and −fi
have the same weight Wd[fi], we will further assume E[fi] ∈ [0, 1). Note that for a subset
S = S1 × · · · × Sk ⊆ ({0, 1}m)k, we have f̂S =

∏k
i=1 f̂iSi

. So,

Wd[f ] =
∑

z∈{0,...,m}k∑
i
zi=d

k∏
i=1

Wzi
[fi] =

d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

(∏
i∈S

Wzi
[fi] ·

∏
i 6∈S

W0[fi]
)
.

Since x = 1− (1− x) ≤ e−(1−x) for every x ∈ R, for every subset S ⊆ [k] of size at most d,
we have∏

i 6∈S

W0[fi] ≤ e
−
∑

i6∈S
(1−W0[fi]) ≤ e−

∑
i6∈S

(1−W0[fi]) · e
∑

i∈S
W0[fi] ≤ ed · e−

∑k

i=1
(1−W0[fi]).
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Hence,

Wd[f ] =
d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

(∏
i∈S

Wzi
[fi] ·

∏
i6∈S

W0[fi]
)

≤ ed · e−
∑k

i=1
(1−W0[fi])

d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

∏
i∈S

Wzi
[fi]. (2)

Define f ′i := (1−fi)/2 ∈ [0, 1]. Let αi := E[f ′i ] = (1−E[fi])/2 ∈ (0, 1/2]. Applying Lemma 10
and Fact 12 to the functions f ′i , we have for every subset S ⊆ [k] of size at most d,∑

z∈[m]S∑
i
zi=d

∏
i∈S

Wzi [f ′i ] ≤
∑

z∈[m]S∑
i
zi=d

∏
i∈S

(
2mzi/2αi

(
2e ln

(
e/α

1/zi

i

))zi/2
)

≤ (
√

8em)d
∑

z∈[m]S∑
i
zi=d

∏
i∈S

(
αi
(
ln
(
e/α

1/zi

i

))zi/2
)
.

Note that for every integer d ≥ 1, we have Wd[fi] = 2Wd[f ′i ]. Plugging the bound above into
Equation (2), we have

Wd[f ] ≤ (2e)d · e−2
∑k

i=1
αi

d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

∏
i∈S

Wzi [f ′i ] ≤
(√

32e3m
)d
g(α1, . . . , αk),

where the function g : (0, 1]k → R is defined by

g(α1, . . . , αk) := e−2
∑k

i=1
αi

d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

∏
i∈S

(
αi
(

ln
(
e/α

1/zi

i

))zi/2
)
. J

We now prove Theorems 3 and 4. For every (α1, . . . , αk) ∈ (0, 1]k, let α :=
∑k
i=1 αi/k ∈

(0, 1]. We note that the upper bound in Theorem 3 is sufficient to prove Theorem 6.

Proof of Theorem 3. We will bound above g(α1, . . . , αk) in Lemma 13. Recall that αi =
(1−E[fi])/2. Since |E[fi]| ≤ 1−2−cm, we have αi ≥ 2−(cm+1), and so ln(1/αi) ≤ cm+1. For
every subset S ⊆ [k], the set {z ∈ [m]S :

∑
i zi = d} has size at most

(
d−1
|S|−1

)
≤ 2d. Hence,∑

z∈[m]S∑
i
zi=d

∏
i∈S

(
ln(1/αi)

)zi/2 ≤ 2d(cm+ 1)d/2.

By Maclaurin’s inequality (cf. [48, Chapter 12]), we have

∑
S⊆[k]
|S|=`

∏
i∈S

αi ≤ (e/`)`
( k∑
i=1

αi

)`
= (e/`)`(kα)`.
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Because the function x 7→ e−2xx` is maximized when x = `/2, it follows that

d∑
`=1

e−2kα
∑
S⊆[k]
|S|=`

∏
i∈S

αi ≤
d∑
`=1

e−2kα(e/`)`(kα)` ≤
d∑
`=1

e−`(e/`)`(`/2)` =
d∑
`=1

2−` ≤ 1.

Therefore,

g(α1, . . . , αk) = e−2
∑k

i=1
αi

d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

∏
i∈S

(
αi
(
ln(1/α1/zi

i )
)zi/2

)

≤ 2d(cm+ 1)d/2
d∑
`=1

e−2kα
∑
S⊆[k]
|S|=`

∏
i∈S

αi

≤ 2d(cm+ 1)d/2.

Plugging this bound into Lemma 13, we have

W1,d[f ] ≤
(√

32e3m
)d · (√4(cm+ 1)

)d ≤ (72(
√
c ·m)

)d
. J

We now prove Theorem 4. Recall that we let α :=
∑k
i=1 αi/k ∈ (0, 1] for every

(α1, . . . , αk) ∈ (0, 1]k. We will show that the maximum of the function g defined in Lemma 13
is attained at the diagonal (α, . . . , α). We state the claim now and defer the proof to the
next section.

B Claim 14. Let g be the function defined in Lemma 13. For every (α1, . . . , αk) ∈ (0, 1]k,
we have g(α1, . . . , αk) ≤ g(α, . . . , α).

Proof of Theorem 4. We first apply Claim 14 and obtain

g(α1, . . . , αk) ≤ g(α, . . . , α) = e−2kα
d∑
`=1

∑
S⊆[k]
|S|=`

α`
∑

z∈[m]S∑
i
zi=d

∏
i∈S

(
ln
(
e/α1/zi

))zi/2
.

We next give an upper bound on g(α, . . . , α) that has no dependence on the numbers zi. By
the weighted AM-GM inequality, for every subset S ⊆ [k] of size ` and numbers zi such that∑
i∈S zi = d,

∏
i∈S

(
ln
(
e/α1/zi

))zi/2 ≤
(∑
i∈S

zi ln
(
e/α1/zi

)
d

)d/2
=
(1
d

∑
i∈S

zi

(
1 + 1

zi
ln(1/α)

))d/2
=
(

1 + `

d
ln(1/α)

)d/2
=
(
ln
(
e/α`/d

))d/2
.
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For every subset S ⊆ [k], the set {z ∈ [m]S :
∑
i zi = d} has size at most

(
d−1
|S|−1

)
≤ 2d. Thus,

g(α, . . . , α) ≤ e−2kα
d∑
`=1

∑
S⊆[k]
|S|=`

α`
∑

z∈[m]S∑
i
zi=d

(
ln
(
e/α`/d

))d/2

≤ 2d
d∑
`=1

e−2kα
∑
S⊆[k]
|S|=`

α`
(
ln
(
e/α`/d

))d/2

≤ 2d
d∑
`=1

e−2kα
(ekα

`

)`(
ln
(
e/α`/d

))d/2
. (3)

For every ` ∈ [k], define g` : (0, 1]→ R to be

g`(x) := e−2kx
(ekx

`

)`(
ln
(
e/x`/d

))d/2
.

We now bound above the maximum of g` over x ∈ (0, 1]. One can verify easily that the
derivative of g is

g′`(x) = g`(x)
2x ln

(
e/x`/d

)(ln(1/x2`/d)(`− 2kx) + (`− 4kx)
)
.

Observe that when x ≤ `/4k, then g′`(x) ≥ g`(x)
4x ln(e/x`/d)

(
` ln(1/x2`/d)

)
≥ 0. Likewise,

when x ≥ `/2k, then g′`(x) ≤ g`(x)
2x ln(e/x`/d) (−`) ≤ 0. Also, we have g`(0) = 0. Hence,

g`(x) ≤ g`(β``/4k) for some β` ∈ [1, 2], which is at most

e−`/2 · (e/2)` ·
(

ln
(
e(4k/`)`/d

))d/2
.

(In the case when `/4k ≥ 1, we have g`(x) ≤ g`(1) ≤ e−2k(ek/`)`.) Therefore, plugging this
back into Equation (3),

g(α, . . . , α) ≤ 2d
d∑
`=1

g`(α) ≤ 2d
d∑
`=1

g`(β``/4k)

≤ 2d
d∑
`=1

e−`/2 · (e/2)` ·
(

ln
(
e(4k/`)`/d

))d/2
≤ 2d

(
e ln(4ek)

)d/2 d∑
`=1

2−`

≤
(√

4e ln(4ek)
)d
.

Putting this back into the bound in Lemma 13, we conclude that

W1,d[f ] ≤
(
84
√
m ln(4ek)

)d
,

proving the theorem. J
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2.1 Schur-concavity of g

We prove Claim 14 in this section. First recall that the function g : (0, 1]k → R is defined as

g(α1, . . . , αk) :=
d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

∏
i∈S

φzi
(αi),

where for every positive integer z, the function φz : (0, 1]→ R is defined by

φz(x) = x ln(e/x1/z)z/2.

The proof of Claim 14 follows from showing that g is Schur-concave. Before defining it,
we first recall the concept of majorization. Let x, y ∈ Rk be two vectors. We say that y
majorizes x, denoted by x ≺ y, if for every j ∈ [k] we have

j∑
i=1

x(i) ≤
j∑
i=1

y(i),

and
∑k
i=1(xi − yi) = 0, where x(i) and y(i) are the ith largest coordinates in x and y

respectively.
A function f : D → R where D ⊆ Rk is Schur-concave if whenever x ≺ y we have

f(x) ≥ f(y). We will show that g is Schur-concave using the Schur–Ostrowski criterion.

I Theorem 15 (Schur–Ostrowski criterion (Theorem 12.25 in [43])). Let f : D → R be a
function where D ⊆ Rk is permutation-invariant, and assume that the first partial derivatives
of f exist in D. Then f is Schur-concave in D if and only if

(xj − xi)
( ∂f
∂xi
− ∂f

∂xj

)
≥ 0

for every x ∈ D, and every 1 ≤ i 6= j ≤ k.

Claim 14 then follows from the observation that (
∑
i xi/k, . . . ,

∑
i xi/k) ≺ x for every

x ∈ [0, 1]k.

B Claim 16. For every x ∈ (0, 1] we have
1. φz(x) ≥ 0;
2. φ′z(x) = 1

2 ln
(

e
x2/z

)
ln
(

e
x1/z

)z/2−1
> 0, and

3. φ′′z (x) = − 1
2xz ln

(
e

x1/z

)z/2−2(2 ln
(

e
x1/z

)
+ ( z2 − 1) ln

(
e

x2/z

))
≤ 0.

Proof. The derivatives of φz and the non-negativity of φz and φ′z can be verified easily. It is
also clear that φ′′z is non-positive when z ≥ 2. Thus it remains to verify φ′′1(x) ≤ 0 for every
x. We have

φ′′1(x) = − 1
2x ln

( e
x

)−3/2(
2 ln
( e
x

)
− 1

2 ln
( e
x2

))
.

It follows from 1
2 ln(e/x2) ≤ ln(e2/x2) = 2 ln(e/x) that φ′′1(x) ≤ 0. C

I Lemma 17. g is Schur-concave.
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Proof. Fix 1 ≤ u 6= v ≤ k and write g = g1 + g2, where

g1(α1, . . . , αk) :=
d∑
`=1

∑
S⊆[k],|S|=`

(S3u∧S 63v)∨(S 63u∧S3v)

∑
z∈[m]S∑

i
zi=d

∏
i∈S

φzi
(αi)

and

g2(α1, . . . , αk) :=
d∑
`=1

∑
S⊆[k],|S|=`

(S3u∧S3v)∨(S 63u∧S 63v)

∑
z∈[m]S∑

i
zi=d

∏
i∈S

φzi
(αi).

We will show that for every α ∈ (0, 1]k, whenever αv ≤ αu we have (1)
(
∂g1
∂αu
− ∂g1
∂αv

)
(α) ≤ 0

and (2)
(
∂g2
∂αu
− ∂g2

∂αv

)
(α) ≤ 0, from which the lemma follows from Theorem 15.

For g1, since φ′′z ≤ 0 and αv ≤ αu, we have φ′zu
(αv) ≥ φ′zu

(αu). Moreover, as φz ≥ 0 and
φ′z > 0, we have

∂g1

∂αu
(α) ≤

d∑
`=1

∑
S⊆[k],|S|=`
(S3u∧S 63v)

∑
z∈[m]S∑

i
zi=d

∏
i∈S
i6=u

φzi(αi) · φ′zu
(αu) ·

φ′zu
(αv)

φ′zu
(αu)

=
d∑
`=1

∑
S⊆[k],|S|=`
(S3u∧S 63v)

∑
z∈[m]S∑

i
zi=d

∏
i∈S
i 6=u

φzi(αi) · φ′zu
(αv)

=
d∑
`=1

∑
S⊆[k],|S|=`
(S3v∧S 63u)

∑
z∈[m]S∑

i
zi=d

∏
i∈S
i 6=v

φzi(αi) · φ′zv
(αv) = ∂g1

∂αv
(α),

where in the second equality we simply renamed zu to zv.
We now show that

(
∂g2
∂αu
− ∂g2

∂αv

)
(α) ≤ 0 whenever αv ≤ αu. For all positive integers z

and w, define ψz,w : (0, 1]2 → R by

ψz,w(x, y) := φ′z(x)φw(y) + φ′w(x)φz(y)− φz(x)φ′w(y)− φw(x)φ′z(y).

Note that when x = y we have ψz,w(x, x) = 0. Moreover, when z = w we have ψz,z(x, y) =
2(φ′z(x)φz(y)− φz(x)φ′z(y)). For every x, y ∈ (0, 1], by Claim 16 we have

∂

∂y
ψz,w(x, y) = φ′z(x)φ′w(y) + φ′w(x)φ′z(y)− φz(x)φ′′w(y)− φw(x)φ′′z (y) ≥ 0.

Since ψzu,zv (αu, αu) = 0, we have ψzu,zv (αu, αv) ≤ 0 whenever αv ≤ αu, and so(
∂g2

∂αu
− ∂g2

∂αv

)
(α) =

d∑
`=2

∑
S⊆[k]
|S|=`

S3u∧S3v

( ∑
z∈[m]S∑

i
zi=d

zu=zv

∏
i∈S
i6=u
i6=v

φzi (αi) ·ψzu,zv (αu, αv)/2+
∑

z∈[m]S∑
i

zi=d

zu<zv

∏
i∈S
i 6=u
i 6=v

φzi (αi) ·ψzu,zv (αu, αv)
)
≤ 0

because the values φzi
are non-negative. J
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2.2 Lower bound
In this section we prove Claim 5. We first restate our claim.

B Claim 5. For all positive integers m and d, there exists a product test f : {0, 1}mk → {0, 1}
with k = d · 2m functions of input length m such that

W1,d[f ] ≥ (m/e3/2)d.

Proof. Let k = d · 2m and f1, . . . , fk : {0, 1}mk → {0, 1} be the OR function on k disjoint
sets of m bits. It is easy to verify that f̂i(∅) = 1− 2−m and |f̂i(S)| = 2−m for every S 6= ∅.
Consider the product test f :=

∏k
i=1 fi. Using the fact that 1− x ≥ e−x(1+x) for x ∈ [0, 1/2],

we have

(1− 2−m)k ≥ e−2m(1+2−m)k ≥ e−d(1+2−m) ≥ e−3d/2.

Hence,

W1,d[f ] =
∑

z∈{0,...,m}k∑
i
zi=d

k∏
i=1

Wzi [fi]

≥
∑
|S|=d

(∏
i∈S

W1,1[fi]
∏
i 6∈S

W1,0[fi]
)

=
(
k

d

)
· (m2−m)d · (1− 2−m)k−d

≥
(d · 2m

d

)d
· (m2−m)d · e−3d/2

= (m/e3/2)d. J

3 Pseudorandom generators

In this section, we use Theorem 4 to construct two pseudorandom generators for product
tests. The first one (Theorem 8) has seed length Õ(m + log(k/ε)) log k. The second one
(Theorem 6) has a seed length of Õ(m + log(n/ε)) but only works for product tests with
outputs {−1, 1} and their variants (see Corollary 7). We note that Theorem 6 can also be
obtained using Theorem 3 in place of Theorem 4.

Both constructions use the Ajtai–Wigderson framework [5, 23], and follow from recursively
applying the following theorem, which roughly says that 2−Ω̃(m+log(k/ε))-almost O(m +
log(k/ε))-wise independence plus constant fraction of noise fools product tests.

I Theorem 11. Let f : {0, 1}n → [−1, 1] be a product test with k functions of input length
m. Let d be a positive integer. Let D and T be two independent δ-almost d-wise independent
distributions over {0, 1}n, and U be the uniform distribution over {0, 1}n. Then∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣ ≤ k · (√δ · (170 ·
√
m ln(ek))d + 2−(d−m)/2),

where “+” and “∧” are bit-wise XOR and AND respectively.

Theorem 11 follows immediately by combining Theorem 4 and Lemma 18 below.
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I Lemma 18. Let f : {0, 1}n → [−1, 1] be a product test with k functions of input length m.
Let d be a positive integer. Let D,T, U be a δ-almost (d+m)-wise independent, a γ-almost
(d+m)-wise independent, and the uniform distributions over {0, 1}n, respectively. Then∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣ ≤ k · (√δ ·W1,≤d+m[f ] + 2−d/2 +√γ
)
,

where “+” and “∧” are bit-wise XOR and AND respectively.

Proof. We slightly modify the decomposition in [21, Proposition 6.1] as follows. Let f
be a product test and write f =

∏k
i=1 fi. As the distribution D + T ∧ U is symmetric,

we can assume the function fi is defined on the ith m bits. For every i ∈ {1, . . . , k}, let
f≤i =

∏
j≤i fj and f>i =

∏
j>i fj . We decompose f into

f = f̂∅ + L+
k∑
i=1

Hif
>i, (4)

where

L :=
∑

α∈{0,1}mk

0<|α|<d

f̂αχα

and

Hi :=
∑

α=(α1,...,αi)∈{0,1}mi:
the dth 1 in α appears in αi

f̂≤iα χα.

We now show that the expressions on both sides of Equation (4) are identical. Clearly, every
Fourier coefficient on the right hand side is a coefficient of f . To see that every coefficient
of f appears on the right hand side exactly once, let α = (α1, . . . , αk) ∈ {0, 1}mk and
f̂α =

∏k
i=1 f̂i(αi) be a coefficient of f . If |α| < d, then f̂α appears in f̂∅ or L. Otherwise,

|α| ≥ d. Then the dth 1 in α must appear in one of α1, . . . , αk. Say it appears in αi. Then
we claim that α appears in Hif

>i. This is because the coefficient indexed by (α1, . . . , αi)
appears in Hi, and the coefficient indexed by (αi+1, . . . , αk) appears in f>i. Note that all
the coefficients in each function Hi have weights between d and d + m, and because our
distributions D and T are both almost (d+m)-wise independent, we get an error of 2−d + γ

in Lemma 7.1 in [21]. The rest of the analysis follows from [21] or [26]. J

3.1 Generator for product tests
We now prove Theorem 8.

I Theorem 8. There exists an explicit generator G : {0, 1}` → {0, 1}n that fools any prod-
uct test with k functions of input length m with error ε and seed length O(logmk)((m +
log(k/ε))(logm+ log log(k/ε)) + log logn) = Õ(m+ log(k/ε)) log k.

The high-level idea is very simple. Let f be a product test. For every choice of D and T
in Theorem 11, the function f ′ : {0, 1}T → [−1, 1] defined by f ′(y) := f(D + T ∧ y) is also a
product test. So we can apply Theorem 11 again and recurse. We show that if we repeat this
argument for t = O(log(mk)) times with t independent copies of D and T , then for every
fixing of D1, . . . , Dt and with high probability over the choice of T1, . . . , Tt, the restricted
product test defined on {0, 1}

∧t

i=1
Ti is a product test defined on at most O(m+ log(k/ε))

bits, which can then be fooled by an almost O(m+ log(k/ε))-wise independent distribution.
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Proof of Theorem 8. Let C be a sufficiently large constant. Let d = C(m + log(k/ε)),
δ = d−2d, and t = C log(mk) = Õ(log k). Let D1, . . . , Dt, T1, . . . , Tt be 2t independent
δ-almost d-wise independent distributions over {0, 1}n. Define D(1) := D1 and D(i+1) :=
Di+1 + Ti ∧D(i).

Let D := D(t), T :=
∧t
i=1 Ti. Let G′ be a δ-almost d-wise independent distribution over

{0, 1}n. For a subset S ⊆ [n], define the function PADS(x) : {0, 1}|S| → {0, 1}n to output n
bits of which the positions in S are the first |S| bits of x0|S| and the rest are 0. Our generator
G outputs

D + T ∧ PADT (G′).

We first look at the seed length of G. By [39, Lemma 4.2], sampling the distributions Di

and Ti takes a seed of length

s := t ·O(d log d+ log logn)
= t ·O

(
(m+ log(k/ε))(logm+ log log(k/ε)) + log logn

)
= t · Õ

(
m+ log(k/ε)

)
.

Sampling G′ takes a seed of length O((m+ log(k/ε))(logm+ log log(k/ε)) + log logn). Hence
the total seed length of G is Õ(m+ log(k/ε)) log k.

We now look at the error of G. By our choice of δ and applying Theorem 11 recursively
for t times, we have∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣ ≤ t · k · (√δ · (170 ·
√
m ln(ek)

)d + 2−(d−m)/2
)

≤ t · k ·
((170

√
m ln(ek)
d

)d
+ 2−Ω(d)

)
≤ t · 2−Ω(d) ≤ ε/2.

Next, we show that for every fixing of D and most choices of T , the function fD,T (y) :=
f(D + T ∧ y) is a product test defined on d bits, which can be fooled by G′.

Let I =
⋃k
i=1 Ii. Note that |I| ≤ mk. Because the variables Ti are independent and each

of them is δ-almost d-wise independent, we have

Pr
[
|I ∩ T | ≥ d

]
≤
(
|I|
d

)
(2−d + δ)t ≤ 2d log(mk) · 2−Ω(d log(mk)) ≤ ε/4.

It follows that for every fixing of D, with probability at least 1− ε/4 over the choice of T ,
the function fD,T is a product test defined on at most d bits, which can be fooled by G′ with
error ε/4. Hence G fools f with error ε. J

3.2 Almost-optimal generator for XOR of Boolean functions
In this section, we construct our generator for product tests with outputs {−1, 1}, which
correspond to the XOR of Boolean functions fi defined on disjoint inputs. Throughout this
section we will call these tests {−1, 1}-products. We first restate our theorem.

I Theorem 6. There exists an explicit generator G : {0, 1}` → {0, 1}n that fools the XOR
of any k Boolean functions on disjoint inputs of length ≤ m with error ε and seed length
O(m+ log(n/ε))(logm+ log log(n/ε))2 = Õ(m+ log(n/ε)).
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Theorem 6 relies on applying the following lemma recursively in different ways. From
now on, we will relax our tests to allow one of the k functions to have input length greater
than m, but bounded by O(m+ log(n/ε)).

I Lemma 19. There exists a constant C such that the following holds. Let m and s be two
integers such that m ≥ C log log(n/ε) and s = 5(m+log(n/ε)). If there is an explicit generator
G′ : {0, 1}`′ → {0, 1}n that fools {−1, 1}-products with k′ ≤ 16m+1 functions, k′ − 1 of which
have input lengths ≤ m/2 and one has length ≤ s, with error ε′ and seed length `′, then there
is an explicit generator G : {0, 1}` → {0, 1}n that fools {−1, 1}-products with k ≤ 162m+1

functions, k − 1 of which have input lengths ≤ m and one has length ≤ s, with error ε′ + ε

and seed length ` = `′ +O(m+ log(n/ε))(logm+ log log(n/ε)) = `′ + Õ(m+ log(n/ε)).

The proof of Lemma 19 closely follows a construction by Meka, Reingold and Tal [38].
First of all, we will use the following generator in [38]. It fools any {−1, 1}-products when
the number of functions k is significantly greater than the input length m of the functions fi.

I Lemma 20 (Lemma 6.2 in [38]). There exists a constant C such that the following holds.
Let n, k,m, s be integers such that C log log(n/ε) ≤ m ≤ logn and 16m ≤ k ≤ 2 ·162m. There
exists an explicit pseudorandom generator G⊕Many : {0, 1}` → {0, 1}n that fools {−1, 1}-
products with k non-constant functions, k − 1 of which have input lengths ≤ m and one has
length ≤ s, with error ε and seed length O(s+ log(n/ε)).

Here is the high-level idea of proving Lemma 19. We consider two cases depending on
whether k is large with respect to m. If k ≥ 16m, then by Lemma 20, the generator G⊕Many
fools f . Otherwise, we show that for every fixing of D and most choices of T , the restriction
of f under (D,T ) is a {−1, 1}-product with k functions, k − 1 of which have input length
≤ m/2 and one has length ≤ s. More specifically, we will show that for most choices of T ,
the following would happen: for the function with input length ≤ s, at most s/2 of its inputs
remain in T ; for the rest of the functions with input length ≤ m, after being restricted by
(D,T ), at most ds/2me of them have input length > m/2, and so they are defined on a total
of s/2 positions in T . Now we can think of these “bad” functions as one function with input
length ≤ s, and the rest of the at most k “good” functions have input length m/2. So we
can apply the generator G′ in our assumption.

Proof of Lemma 19. Let C be the constant in Lemma 20 and C ′ be a sufficiently large
constant.

Let d = C ′s and δ = d−2d. Let D1, . . . , D50, T1, . . . , T50 be 100 independent δ-almost d-
wise independent distributions over {0, 1}n. Define D(1) := D1 and D(i+1) := Di+1+Ti∧D(i).

Let D := D(50), T :=
∧50
i=1 Ti and G⊕Many be the generator in Lemma 20 with respect

to the values of n, k,m, s given in this lemma. For a subset S ⊆ [n], define the function
PADS(x) : {0, 1}|S| → {0, 1}n to output n bits of which the positions in S are the first |S|
bits of x0|S| and the rest are 0. Our generator G outputs

(D + T ∧ PADT (G′)) +G⊕Many.

We first look at the seed length of G. By Lemma 20, G⊕Many uses a seed of length
O(s+ log(n/ε)) = O(m+ log(n/ε)). By [39, Lemma 4.2], sampling the distributions Di and
Ti takes a seed of length

O(s log s) = O
(
m+ log(n/ε)

)
(logm+ log log(n/ε)) = Õ(m+ log(n/ε)).

Hence the total seed length of G is `′ +O(m+ log(n/ε))(logm+ log log(n/ε)) = `′ + Õ(m+
log(n/ε)).
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We now show that G fools f . Write f =
∏k
i=1 fi, where fi : {0, 1}Ii → {−1, 1}. Without

loss of generality we can assume each function fi is non-constant. We consider two cases.

k is large

If k ≥ 16m, then for every fixing ofD, T andG′, the function f ′(y) := f(D+T∧PADT (G′)+y)
is also a {−1, 1}-product with the same parameters as f . Note that we always have k ≤ n
and so m ≤ logn. Hence it follows from Lemma 20 that the generator G⊕Many fools f ′ with
error ε. Averaging over D, T and G′ shows that G fools f with error ε.

k is small

Now suppose k ≤ 16m. For every fixing of G⊕Many, consider f ′(y) := f(y +G⊕Many). Again,
f ′ is a {−1, 1}-product with the same parameters as f . In particular, it is a {−1, 1}-product
with k functions with input length s. So, by our choice of δ and applying Theorem 11
recursively for 50 times, we have∣∣E[f ′(D + T ∧ U)]− E[f ′(U)]

∣∣ ≤ 50 · k ·
(√

δ ·
(
170 ·

√
s ln(ek)

)d + 2−(d−s)/2
)

≤ 50 · 2s ·
(

(170s/d)d + 2−Ω(s)
)

≤ 2−Ω(s) ≤ ε/2.

Next, we show that for every fixing of D and most choices of T , the function f ′D,T (y) :=
f ′(D+T ∧ y) is a {−1, 1}-product with k functions, k− 1 of which have input lengths ≤ m/2
and one has length ≤ s, which can be fooled by G′.

Because the variables Ti are independent and each of them is δ-almost d-wise independent,
for every subset I ⊆ [n] of size at most d, we have

Pr[T ∩ I = I] =
50∏
i=1

Pr[Ti ∩ I = I] ≤ (2−|I| + δ)50 ≤ (3/4)−50|I|.

Without loss of generality, we assume I1, . . . , Ik−1 are the subsets of size at most m and
Ik is the subset of size at most s. We now look at which subsets T ∩ Ii have length at most
m/2 and which subsets do not. For the latter, we collect the indices in these subsets.

Let G := {i ∈ [k − 1] : |T ∩ Ii| ≤ m/2}, B := {i ∈ [k − 1] : |T ∩ Ii| > m/2} and
BV := {j ∈ [n] : j ∈

⋃
i∈B(T ∩ Ii)}. We claim that with probability 1 − ε/2 over the

choice of T , we have |BV | ≤ s. Note that the indices in BV either come from Ik, or Ii for
i ∈ [k − 1]. For the first case, the probability that at least s/2 of the indices in Ik appear in
BV is at most(

|Ik|
s/2

)
(3/4)−25s ≤ 2s · (3/4)−25s ≤ ε/4.

For the second case, note that if at least s/2 of the variables in
⋃
i∈[k−1] Ii appear in BV ,

then they must appear in at least ds/2me of the subsets T ∩ I1, . . . , T ∩ Ik−1. The probability
of the former is at most the probability of the latter, which is at most(

k − 1
ds/2me

)(
m · ds/2me

s/2

)
(3/4)−25s ≤ 16m·(s/2m+1) · 2m·(s/2m+1) · (3/4)−25s ≤ ε/4,

because k ≤ 16m and m ≤ s. Hence with probability 1 − ε/2 over the choice of T , the
function f ′D,T is a product g · h, where g is a product of |G| ≤ k− 1 functions of input length
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7:20 Fourier Bounds and Pseudorandom Generators for Product Tests

m/2, and h is a product of |B|+ 1 functions defined on a total of |BV | ≤ s bits. Recall that
k ≤ 16m, so by our assumption G′ fools f ′D,T with error ε′. Therefore G fools f with error
ε+ ε′. J

We obtain Theorem 6 by applying Lemma 19 repeatedly in different ways.

Proof of Theorem 6. Given a {−1, 1}-product f : {0, 1}n → {−1, 1} with k functions of
input length m, we will apply Lemma 19 in stages. In each stage, we start with a {−1, 1}-
product f with k1 functions, k1 − 1 of which have input lengths ≤ m1 = max{m, 2 log(n/ε)}
and one has length ≤ s := 5(m+ log(n/ε)). Note that k1 ≤ 162m1+1. Let C be the constant
in Lemma 19. We apply Lemma 19 for t = O(logm1) times until f is restricted to a
{−1, 1}-product f ′ with k2 functions, k2 − 1 of which have input lengths ≤ m2 and one has
length ≤ s, where m2 = C log log(n/ε), k2 ≤ 162m2+1 ≤ (log(n/ε))r, and r := 8C + 4 is a
constant. This uses a seed of length

t ·O(m+ log(n/ε))(logm+ log log(n/ε)) ≤ O(m+ log(n/ε))(logm+ log log(n/ε))2

= Õ(m+ log(n/ε)).

At the end of each stage, we repeat the above argument by grouping every dlog(n/ε)/m2e
functions of f ′ that have input lengths ≤ m2 as one function of input length ≤ 2 log(n/ε), so
we can think of f ′ as a {−1, 1}-product with k3 := k2/dm2/(logn)e ≤ (log(n/ε))r−1 log logn
functions, k3 − 1 of which have input lengths ≤ log(n/ε) and one has length ≤ s.

Repeating above for r + 1 = O(1) stages, we are left with a {−1, 1}-product of two
functions, one has input length ≤ C log log(n/ε), and one has length ≤ s, which can then be
fooled by a 2−Ω(s)-biased distribution that can be sampled using O(m+ log(n/ε)) bits [39].
So the total seed length is O(m+ log(n/ε))(logm+ log log(n/ε))2 = Õ(m+ log(n/ε)), and
the error is (r + 1) · t · ε. Replacing ε with ε/(r + 1)t proves the theorem. J

4 Level-d inequalities

In this section, we prove Lemma 10 that gives an upper bound on the dth level Fourier
weight of a [0, 1]-valued function in L2-norm. We first restate the lemma.

I Lemma 10. Let g : {0, 1}n → [0, 1] be any function. For every positive integer d, we have

W2,d[g] ≤ 4E[g]2
(
2e ln(e/E[g]1/d)

)d
.

Our proof closely follows the argument in [52].

B Claim 21. Let f : {0, 1}n → R have Fourier degree at most d and ‖f‖2 = 1. Let
g : {0, 1}n → [0, 1] be any function. If t0 ≥ 2ed/2, then

E
[
g(x)|f(x)|

]
≤ E[g]t0 + 2et1−2/d

0 e−
d

2e t
2/d
0 .

To prove this claim, we will use the following concentration inequality for functions with
Fourier degree d from [18].

I Theorem 22 (Lemma 2.2 in [18]). Let f : {0, 1}n → R have Fourier degree at most d and
assume that ‖f‖2 :=

∑
S f̂

2
S = 1. Then for any t ≥ (2e)d/2,

Pr
[
|f | ≥ t

]
≤ e− d

2e t
2/d

.
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We also need to bound above the integral of e− d
2e t

2/d .

B Claim 23. Let d be any positive integer. If t0 ≥ (2e)d/2, then we have∫ ∞
t0

e−
d

2e t
2/d

dt ≤ 2et1−2/d
0 e−

d
2e t

2/d
0 .

Proof. First we apply the following change of variable to the integral. We set s = d
2e t

2/d and
obtain∫ ∞

t0

e−
d

2e t
2/d

dt = e
(2e
d

)d/2−1 ∫ ∞
s0

sd/2−1e−sds,

where s0 = d
2e t

2/d
0 . Define

Γs0(d) =
∫ ∞
s0

sd−1e−sds.

(Note that when s0 = 0 then Γ0(d) is the Gamma function.) Using integration by parts, we
have

Γs0(d) = sd−1
0 e−s0 + (d− 1)Γs0(d− 1). (5)

Moreover, when d ≤ 1, we have Γs0(d) ≤ sd−1
0

∫∞
s0
e−sds = sd−1

0 e−s0 .
Note that if t0 ≥ (2e)d/2, then s0 ≥ d− 2. Hence, if we open the recursive definition of

Γs0(d/2) in Equation (5), we have

Γs0(d/2) ≤ e−s0

d d
2 e−1∑
i=0

s
d/2−1−i
0

i∏
j=1

(d/2− j)

≤ e−s0s
d/2−1
0

d d
2 e−1∑
i=0

(d/2− 1
s0

)i
≤ 2e−s0s

d/2−1
0 ,

because the summation is a geometric sum with ratio at most 1/2. Substituting s0 with t0,
we obtain

e
(2e
d

)d/2−1 ∫ ∞
s0

sd/2−1e−sds ≤ 2e
(2e
d

)d/2−1
e−s0s

d/2−1
0

= 2et1−2/d
0 e−

d
2e t

2/d
0 . J

Proof of Claim 21. We rewrite |f(x)| as
∫ |f(x)|

0 1dt =
∫∞

0 1(|f(x)| ≥ t)dt and obtain

E
x∼{0,1}n

[g(x)|f(x)|] = E
x∼{0,1}n

[∫ ∞
0

g(x)1(|f(x)| ≥ t)dt
]

≤ E
x∼{0,1}n

[∫ ∞
0

min
{
g(x),1(|f(x)| ≥ t)

}
dt
]

=
∫ ∞

0
min

{
E[g],Pr

x
[|f(x)| ≥ t]

}
dt

≤
∫ t0

0
E[g]dt+

∫ ∞
t0

Pr
[
|f(x)| ≥ t

]
dt

≤ E[g]t0 +
∫ ∞
t0

e−
d

2e t
2/d

dt.

Since t0 ≥ (2e)d/2, by Claim 23 this is at most E[g]t0 + 2et1−2/d
0 e−

d
2e t

2/d
0 . C
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Proof of Lemma 10. Define f to be f(x) :=
∑
|S|=d f̂SχS(x), where f̂S = ĝS

(∑
|T |=d

ĝ2
T

)−1/2.
Note that ‖f‖2 = 1, and we have

E[g(x)f(x)] =
∑
S ĝS E[g(x)χS(x)](∑
|T |=d ĝ

2
T

)1/2 =
(∑
|S|=d

ĝ2
S

)1/2
.

Let t0 = (2e ln(e/E[g]1/d))d/2 ≥ (2e)d/2. By Claim 21,(∑
|S|=d

ĝ2
S

)1/2
= E[g(x)f(x)] ≤ E[g(x)|f(x)|] ≤ E[g]t0 + 2et1−2/d

0 e−
d

2e t
2/d
0 .

By our choice of t0, the second term is at most

2et1−2/d
0 e−

d
2e t

2/d
0 ≤

(
2e ln

( e

E[g]1/d
))d/2 E[g]

ed
≤ (2/e)d/2 E[g] ln

( e

E[g]1/d
)d/2

,

which is no greater than the first term. So(∑
|S|=d

ĝ2
S

)1/2
≤ 2E[g]

(
2e ln(e/E[g]1/d)

)d/2
,

and the lemma follows. J
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