9,601 research outputs found

    The chromatic index of graphs of high maximum degree

    Get PDF
    AbstractIn this paper, we give sufficient conditions for simple graphs to be class 1. These conditions mainly depend on the edge-connectivity, maximum degree and the number of vertices of maximum degree of a graph. Using these conditions, we can extend various results of Chetwynd and Hilton, and Niessen and Volkmann

    Multigraphs with High Chromatic Index

    Get PDF
    In this thesis we take a specialized approach to edge-colouring by focusing exclusively on multigraphs with high chromatic index. The bulk of our results can be classified into three categories. First, we prove results which aim to characterize those multigraphs achieving known upper bounds. For example, Goldberg's Theorem says that χ'≤ Δ+1+(Δ-2}/(g₀+1) (where χ' denotes chromatic index, Δ denotes maximum degree, and g₀ denotes odd girth). We characterize this bound by proving that for a connected multigraph G, χ'= Δ+1+(Δ-2}/(g₀+1) if and only if G=μC_g₀ and (g₀+1)|2(μ-1) (where μ denotes maximum edge-multiplicity). Our second category of results are new upper bounds for chromatic index in multigraphs, and accompanying polynomial-time edge-colouring algorithms. Our bounds are all approximations to the famous Seymour-Goldberg Conjecture, which asserts that χ'≤ max{⌈ρ⌉, Δ+1} (where ρ=max{(2|E[S]|)/(|S|-1): S⊆V, |S|≥3 and odd}). For example, we refine Goldberg's classical Theorem by proving that χ'≤ max{⌈ρ⌉, Δ+1+(Δ-3)/(g₀+3)}. Our third category of results are characterizations of high chromatic index in general, with particular focus on our approximation results. For example, we completely characterize those multigraphs with χ'> Δ+1+(Δ-3)/(g₀+3). The primary method we use to prove results in this thesis is the method of Tashkinov trees. We first solidify the theory behind this method, and then provide general edge-colouring results depending on Tashkinov trees. We also explore the limits of this method, including the possibility of vertex-colouring graphs which are not line graphs of multigraphs, and the importance of Tashkinov trees with regard to the Seymour-Goldberg Conjecture

    Distance-generalized Core Decomposition

    Full text link
    The kk-core of a graph is defined as the maximal subgraph in which every vertex is connected to at least kk other vertices within that subgraph. In this work we introduce a distance-based generalization of the notion of kk-core, which we refer to as the (k,h)(k,h)-core, i.e., the maximal subgraph in which every vertex has at least kk other vertices at distance h\leq h within that subgraph. We study the properties of the (k,h)(k,h)-core showing that it preserves many of the nice features of the classic core decomposition (e.g., its connection with the notion of distance-generalized chromatic number) and it preserves its usefulness to speed-up or approximate distance-generalized notions of dense structures, such as hh-club. Computing the distance-generalized core decomposition over large networks is intrinsically complex. However, by exploiting clever upper and lower bounds we can partition the computation in a set of totally independent subcomputations, opening the door to top-down exploration and to multithreading, and thus achieving an efficient algorithm

    Ramsey-nice families of graphs

    Get PDF
    For a finite family F\mathcal{F} of fixed graphs let Rk(F)R_k(\mathcal{F}) be the smallest integer nn for which every kk-coloring of the edges of the complete graph KnK_n yields a monochromatic copy of some FFF\in\mathcal{F}. We say that F\mathcal{F} is kk-nice if for every graph GG with χ(G)=Rk(F)\chi(G)=R_k(\mathcal{F}) and for every kk-coloring of E(G)E(G) there exists a monochromatic copy of some FFF\in\mathcal{F}. It is easy to see that if F\mathcal{F} contains no forest, then it is not kk-nice for any kk. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F\mathcal{F} that contains at least one forest, and for all kk0(F)k\geq k_0(\mathcal{F}) (or at least for infinitely many values of kk), F\mathcal{F} is kk-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F\mathcal{F} containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni, Charbit and Howard regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.Comment: 20 pages, 2 figure

    The chromatic index of strongly regular graphs

    Full text link
    We determine (partly by computer search) the chromatic index (edge-chromatic number) of many strongly regular graphs (SRGs), including the SRGs of degree k18k \leq 18 and their complements, the Latin square graphs and their complements, and the triangular graphs and their complements. Moreover, using a recent result of Ferber and Jain it is shown that an SRG of even order nn, which is not the block graph of a Steiner 2-design or its complement, has chromatic index kk, when nn is big enough. Except for the Petersen graph, all investigated connected SRGs of even order have chromatic index equal to their degree, i.e., they are class 1, and we conjecture that this is the case for all connected SRGs of even order.Comment: 10 page
    corecore