8,643 research outputs found

    Directed quantum communication

    Full text link
    We raise the question whether there is a way to characterize the quantum information transport properties of a medium or material. For this analysis the special features of quantum information have to be taken into account. We find that quantum communication over an isotropic medium, as opposed to classical information transfer, requires the transmitter to direct the signal towards the receiver. Furthermore, for large classes of media there is a threshold, in the sense that `sufficiently much' of the signal has to be collected. Therefore, the medium's capacity for quantum communication can be characterized in terms of how the size of the transmitter and receiver has to scale with the transmission distance to maintain quantum information transmission. To demonstrate the applicability of this concept, an n-dimensional spin lattice is considered, yielding a sufficient scaling of d^(n/3) with the distance d

    Unconstrained distillation capacities of a pure-loss bosonic broadcast channel

    Get PDF
    Bosonic channels are important in practice as they form a simple model for free-space or fiber-optic communication. Here we consider a single-sender two-receiver pure-loss bosonic broadcast channel and determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. We show how the state merging protocol leads to achievable rates in this setting, giving an inner bound on the capacity region. We also evaluate an outer bound on the region by using the relative entropy of entanglement and a `reduction by teleportation' technique. The outer bounds match the inner bounds in the infinite-energy limit, thereby establishing the unconstrained capacity region for such channels. Our result could provide a useful benchmark for implementing a broadcasting of entanglement and secret key through such channels. An important open question relevant to practice is to determine the capacity region in both this setting and the single-sender single-receiver case when there is an energy constraint on the transmitter.Comment: v2: 6 pages, 3 figures, introduction revised, appendix added where the result is extended to the 1-to-m pure-loss bosonic broadcast channel. v3: minor revision, typo error correcte

    Classical capacity of the lossy bosonic channel: the exact solution

    Full text link
    The classical capacity of the lossy bosonic channel is calculated exactly. It is shown that its Holevo information is not superadditive, and that a coherent-state encoding achieves capacity. The capacity of far-field, free-space optical communications is given as an example.Comment: 4 pages, 2 figures (revised version

    Strong Converse for a Degraded Wiretap Channel via Active Hypothesis Testing

    Full text link
    We establish an upper bound on the rate of codes for a wiretap channel with public feedback for a fixed probability of error and secrecy parameter. As a corollary, we obtain a strong converse for the capacity of a degraded wiretap channel with public feedback. Our converse proof is based on a reduction of active hypothesis testing for discriminating between two channels to coding for wiretap channel with feedback.Comment: This paper was presented at Allerton 201

    Quantum Limitations on the Storage and Transmission of Information

    Full text link
    Information must take up space, must weigh, and its flux must be limited. Quantum limits on communication and information storage leading to these conclusions are here described. Quantum channel capacity theory is reviewed for both steady state and burst communication. An analytic approximation is given for the maximum signal information possible with occupation number signal states as a function of mean signal energy. A theorem guaranteeing that these states are optimal for communication is proved. A heuristic "proof" of the linear bound on communication is given, followed by rigorous proofs for signals with specified mean energy, and for signals with given energy budget. And systems of many parallel quantum channels are shown to obey the linear bound for a natural channel architecture. The time--energy uncertainty principle is reformulated in information language by means of the linear bound. The quantum bound on information storage capacity of quantum mechanical and quantum field devices is reviewed. A simplified version of the analytic proof for the bound is given for the latter case. Solitons as information caches are discussed, as is information storage in one dimensional systems. The influence of signal self--gravitation on communication is considerd. Finally, it is shown that acceleration of a receiver acts to block information transfer.Comment: Published relatively inaccessible review on a perennially interesting subject. Plain TeX, 47 pages, 5 jpg figures (not embedded
    • …
    corecore