857 research outputs found

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Defective and Clustered Choosability of Sparse Graphs

    Full text link
    An (improper) graph colouring has "defect" dd if each monochromatic subgraph has maximum degree at most dd, and has "clustering" cc if each monochromatic component has at most cc vertices. This paper studies defective and clustered list-colourings for graphs with given maximum average degree. We prove that every graph with maximum average degree less than 2d+2d+2k\frac{2d+2}{d+2} k is kk-choosable with defect dd. This improves upon a similar result by Havet and Sereni [J. Graph Theory, 2006]. For clustered choosability of graphs with maximum average degree mm, no (1−ϵ)m(1-\epsilon)m bound on the number of colours was previously known. The above result with d=1d=1 solves this problem. It implies that every graph with maximum average degree mm is ⌊34m+1⌋\lfloor{\frac{3}{4}m+1}\rfloor-choosable with clustering 2. This extends a result of Kopreski and Yu [Discrete Math., 2017] to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degree mm is ⌊710m+1⌋\lfloor{\frac{7}{10}m+1}\rfloor-choosable with clustering 99, and is ⌊23m+1⌋\lfloor{\frac{2}{3}m+1}\rfloor-choosable with clustering O(m)O(m). As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth-moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented

    Universal targets for homomorphisms of edge-colored graphs

    Full text link
    A kk-edge-colored graph is a finite, simple graph with edges labeled by numbers 1,…,k1,\ldots,k. A function from the vertex set of one kk-edge-colored graph to another is a homomorphism if the endpoints of any edge are mapped to two different vertices connected by an edge of the same color. Given a class F\mathcal{F} of graphs, a kk-edge-colored graph H\mathbb{H} (not necessarily with the underlying graph in F\mathcal{F}) is kk-universal for F\mathcal{F} when any kk-edge-colored graph with the underlying graph in F\mathcal{F} admits a homomorphism to H\mathbb{H}. We characterize graph classes that admit kk-universal graphs. For such classes, we establish asymptotically almost tight bounds on the size of the smallest universal graph. For a nonempty graph GG, the density of GG is the maximum ratio of the number of edges to the number of vertices ranging over all nonempty subgraphs of GG. For a nonempty class F\mathcal{F} of graphs, D(F)D(\mathcal{F}) denotes the density of F\mathcal{F}, that is the supremum of densities of graphs in F\mathcal{F}. The main results are the following. The class F\mathcal{F} admits kk-universal graphs for k≥2k\geq2 if and only if there is an absolute constant that bounds the acyclic chromatic number of any graph in F\mathcal{F}. For any such class, there exists a constant cc, such that for any k≥2k \geq 2, the size of the smallest kk-universal graph is between kD(F)k^{D(\mathcal{F})} and ck⌈D(F)⌉ck^{\lceil D(\mathcal{F})\rceil}. A connection between the acyclic coloring and the existence of universal graphs was first observed by Alon and Marshall (Journal of Algebraic Combinatorics, 8(1):5-13, 1998). One of their results is that for planar graphs, the size of the smallest kk-universal graph is between k3+3k^3+3 and 5k45k^4. Our results yield that there exists a constant cc such that for all kk, this size is bounded from above by ck3ck^3

    Boxicity of graphs on surfaces

    Get PDF
    The boxicity of a graph G=(V,E)G=(V,E) is the least integer kk for which there exist kk interval graphs Gi=(V,Ei)G_i=(V,E_i), 1≤i≤k1 \le i \le k, such that E=E1∩...∩EkE=E_1 \cap ... \cap E_k. Scheinerman proved in 1984 that outerplanar graphs have boxicity at most two and Thomassen proved in 1986 that planar graphs have boxicity at most three. In this note we prove that the boxicity of toroidal graphs is at most 7, and that the boxicity of graphs embeddable in a surface Σ\Sigma of genus gg is at most 5g+35g+3. This result yields improved bounds on the dimension of the adjacency poset of graphs on surfaces.Comment: 9 pages, 2 figure

    Colouring exact distance graphs of chordal graphs

    Full text link
    For a graph G=(V,E)G=(V,E) and positive integer pp, the exact distance-pp graph G[♮p]G^{[\natural p]} is the graph with vertex set VV and with an edge between vertices xx and yy if and only if xx and yy have distance pp. Recently, there has been an effort to obtain bounds on the chromatic number χ(G[♮p])\chi(G^{[\natural p]}) of exact distance-pp graphs for GG from certain classes of graphs. In particular, if a graph GG has tree-width tt, it has been shown that χ(G[♮p])∈O(pt−1)\chi(G^{[\natural p]}) \in \mathcal{O}(p^{t-1}) for odd pp, and χ(G[♮p])∈O(ptΔ(G))\chi(G^{[\natural p]}) \in \mathcal{O}(p^{t}\Delta(G)) for even pp. We show that if GG is chordal and has tree-width tt, then χ(G[♮p])∈O(p t2)\chi(G^{[\natural p]}) \in \mathcal{O}(p\, t^2) for odd pp, and χ(G[♮p])∈O(p t2Δ(G))\chi(G^{[\natural p]}) \in \mathcal{O}(p\, t^2 \Delta(G)) for even pp. If we could show that for every graph HH of tree-width tt there is a chordal graph GG of tree-width tt which contains HH as an isometric subgraph (i.e., a distance preserving subgraph), then our results would extend to all graphs of tree-width tt. While we cannot do this, we show that for every graph HH of genus gg there is a graph GG which is a triangulation of genus gg and contains HH as an isometric subgraph.Comment: 11 pages, 2 figures. Versions 2 and 3 include minor changes, which arise from reviewers' comment

    On the Generalised Colouring Numbers of Graphs that Exclude a Fixed Minor

    Full text link
    The generalised colouring numbers colr(G)\mathrm{col}_r(G) and wcolr(G)\mathrm{wcol}_r(G) were introduced by Kierstead and Yang as a generalisation of the usual colouring number, and have since then found important theoretical and algorithmic applications. In this paper, we dramatically improve upon the known upper bounds for generalised colouring numbers for graphs excluding a fixed minor, from the exponential bounds of Grohe et al. to a linear bound for the rr-colouring number colr\mathrm{col}_r and a polynomial bound for the weak rr-colouring number wcolr\mathrm{wcol}_r. In particular, we show that if GG excludes KtK_t as a minor, for some fixed t≥4t\ge4, then colr(G)≤(t−12) (2r+1)\mathrm{col}_r(G)\le\binom{t-1}{2}\,(2r+1) and wcolr(G)≤(r+t−2t−2)⋅(t−3)(2r+1)∈O(r t−1)\mathrm{wcol}_r(G)\le\binom{r+t-2}{t-2}\cdot(t-3)(2r+1)\in\mathcal{O}(r^{\,t-1}). In the case of graphs GG of bounded genus gg, we improve the bounds to colr(G)≤(2g+3)(2r+1)\mathrm{col}_r(G)\le(2g+3)(2r+1) (and even colr(G)≤5r+1\mathrm{col}_r(G)\le5r+1 if g=0g=0, i.e. if GG is planar) and wcolr(G)≤(2g+(r+22)) (2r+1)\mathrm{wcol}_r(G)\le\Bigl(2g+\binom{r+2}{2}\Bigr)\,(2r+1).Comment: 21 pages, to appear in European Journal of Combinatoric
    • …
    corecore