356,363 research outputs found

    Communicating Java Threads

    Get PDF
    The incorporation of multithreading in Java may be considered a significant part of the Java language, because it provides udimentary facilities for concurrent programming. However, we belief that the use of channels is a fundamental concept for concurrent programming. The channel approach as described in this paper is a realization of a systematic design method for concurrent programming in Java based on the CSP paradigm. CSP requires the availability of a Channel class and the addition of composition constructs for sequential, parallel and alternative processes. The Channel class and the constructs have been implemented in Java in compliance with the definitions in CSP. As a result, implementing communication between processes is facilitated, enabling the programmer to avoid deadlock more easily, and freeing the programmer from synchronization and scheduling constructs. The use of the Channel class and the additional constructs is illustrated in a simple application

    Increasing Performances of TCP Data Transfers Through Multiple Parallel Connections

    Get PDF
    Although Transmission Control Protocol (TCP) is a widely deployed and successful protocol, it shows some limitations in present-day environments. In particular, it is unable to exploit multiple (physical or logical) paths between two hosts. This paper presents PATTHEL, a session-layer solution designed for parallelizing stream data transfers. Parallelization is achieved by striping the data flow among multiple TCP channels. This solution does not require invasive changes to the networking stack and can be implemented entirely in user space. Moreover, it is flexible enough to suit several scenarios - e.g. it can be used to split a data transfer among multiple relays within a peer-to-peer overlay networ

    How Much Multiuser Diversity is Required for Energy Limited Multiuser Systems?

    Full text link
    Multiuser diversity (MUDiv) is one of the central concepts in multiuser (MU) systems. In particular, MUDiv allows for scheduling among users in order to eliminate the negative effects of unfavorable channel fading conditions of some users on the system performance. Scheduling, however, consumes energy (e.g., for making users' channel state information available to the scheduler). This extra usage of energy, which could potentially be used for data transmission, can be very wasteful, especially if the number of users is large. In this paper, we answer the question of how much MUDiv is required for energy limited MU systems. Focusing on uplink MU wireless systems, we develop MU scheduling algorithms which aim at maximizing the MUDiv gain. Toward this end, we introduce a new realistic energy model which accounts for scheduling energy and describes the distribution of the total energy between scheduling and data transmission stages. Using the fact that such energy distribution can be controlled by varying the number of active users, we optimize this number by either (i) minimizing the overall system bit error rate (BER) for a fixed total energy of all users in the system or (ii) minimizing the total energy of all users for fixed BER requirements. We find that for a fixed number of available users, the achievable MUDiv gain can be improved by activating only a subset of users. Using asymptotic analysis and numerical simulations, we show that our approach benefits from MUDiv gains higher than that achievable by generic greedy access algorithm, which is the optimal scheduling method for energy unlimited systems.Comment: 28 pages, 9 figures, submitted to IEEE Trans. Signal Processing in Oct. 200

    Design of a silicon cochlea system with biologically faithful response

    Get PDF
    This paper presents the design and simulation results of a silicon cochlea system that has closely similar behavior as the real cochlea. A cochlea filter-bank based on the improved three-stage filter cascade structure is used to model the frequency decomposition function of the basilar membrane; a filter tuning block is designed to model the adaptive response of the cochlea; besides, an asynchronous event-triggered spike codec is employed as the system interface with bank-end spiking neural networks. As shown in the simulation results, the system has biologically faithful frequency response, impulse response, and active adaptation behavior; also the system outputs multiple band-pass channels of spikes from which the original sound input can be recovered. The proposed silicon cochlea is feasible for analog VLSI implementation so that it not only emulates the way that sounds are preprocessed in human ears but also is able match the compact physical size of a real cochlea

    Grant-Free Massive MTC-Enabled Massive MIMO: A Compressive Sensing Approach

    Full text link
    A key challenge of massive MTC (mMTC), is the joint detection of device activity and decoding of data. The sparse characteristics of mMTC makes compressed sensing (CS) approaches a promising solution to the device detection problem. However, utilizing CS-based approaches for device detection along with channel estimation, and using the acquired estimates for coherent data transmission is suboptimal, especially when the goal is to convey only a few bits of data. First, we focus on the coherent transmission and demonstrate that it is possible to obtain more accurate channel state information by combining conventional estimators with CS-based techniques. Moreover, we illustrate that even simple power control techniques can enhance the device detection performance in mMTC setups. Second, we devise a new non-coherent transmission scheme for mMTC and specifically for grant-free random access. We design an algorithm that jointly detects device activity along with embedded information bits. The approach leverages elements from the approximate message passing (AMP) algorithm, and exploits the structured sparsity introduced by the non-coherent transmission scheme. Our analysis reveals that the proposed approach has superior performance compared to application of the original AMP approach.Comment: Submitted to IEEE Transactions on Communication

    SOVEREIGN: An Autonomous Neural System for Incrementally Learning Planned Action Sequences to Navigate Towards a Rewarded Goal

    Full text link
    How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goaloriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and sizeinvariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.Riverside Reserach Institute; Defense Advanced Research Projects Agency (N00014-92-J-4015); Air Force Office of Scientific Research (F49620-92-J-0225); National Science Foundation (IRI 90-24877, SBE-0345378); Office of Naval Research (N00014-92-J-1309, N00014-91-J-4100, N00014-01-1-0624, N00014-01-1-0624); Pacific Sierra Research (PSR 91-6075-2
    • …
    corecore