3,907 research outputs found

    Discrete maximal regularity of time-stepping schemes for fractional evolution equations

    Get PDF
    In this work, we establish the maximal ℓp\ell^p-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order α∈(0,2)\alpha\in(0,2), α≠1\alpha\neq 1, in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis [48] and its discrete analogue due to Blunck [10]. These results generalize the corresponding results for parabolic problems

    Error Estimates for Approximations of Distributed Order Time Fractional Diffusion with Nonsmooth Data

    Get PDF
    In this work, we consider the numerical solution of an initial boundary value problem for the distributed order time fractional diffusion equation. The model arises in the mathematical modeling of ultra-slow diffusion processes observed in some physical problems, whose solution decays only logarithmically as the time tt tends to infinity. We develop a space semidiscrete scheme based on the standard Galerkin finite element method, and establish error estimates optimal with respect to data regularity in L2(D)L^2(D) and H1(D)H^1(D) norms for both smooth and nonsmooth initial data. Further, we propose two fully discrete schemes, based on the Laplace transform and convolution quadrature generated by the backward Euler method, respectively, and provide optimal convergence rates in the L2(D)L^2(D) norm, which exhibits exponential convergence and first-order convergence in time, respectively. Extensive numerical experiments are provided to verify the error estimates for both smooth and nonsmooth initial data, and to examine the asymptotic behavior of the solution.Comment: 25 pages, 2 figure

    Numerical analysis of nonlinear subdiffusion equations

    Get PDF
    We present a general framework for the rigorous numerical analysis of time-fractional nonlinear parabolic partial differential equations, with a fractional derivative of order α∈(0,1)\alpha\in(0,1) in time. The framework relies on three technical tools: a fractional version of the discrete Gr\"onwall-type inequality, discrete maximal regularity, and regularity theory of nonlinear equations. We establish a general criterion for showing the fractional discrete Gr\"onwall inequality, and verify it for the L1 scheme and convolution quadrature generated by BDFs. Further, we provide a complete solution theory, e.g., existence, uniqueness and regularity, for a time-fractional diffusion equation with a Lipschitz nonlinear source term. Together with the known results of discrete maximal regularity, we derive pointwise L2(Ω)L^2(\Omega) norm error estimates for semidiscrete Galerkin finite element solutions and fully discrete solutions, which are of order O(h2)O(h^2) (up to a logarithmic factor) and O(τα)O(\tau^\alpha), respectively, without any extra regularity assumption on the solution or compatibility condition on the problem data. The sharpness of the convergence rates is supported by the numerical experiments

    Inverse Problems of Determining Coefficients of the Fractional Partial Differential Equations

    Full text link
    When considering fractional diffusion equation as model equation in analyzing anomalous diffusion processes, some important parameters in the model, for example, the orders of the fractional derivative or the source term, are often unknown, which requires one to discuss inverse problems to identify these physical quantities from some additional information that can be observed or measured practically. This chapter investigates several kinds of inverse coefficient problems for the fractional diffusion equation

    Reflected Spectrally Negative Stable Processes and their Governing Equations

    Full text link
    This paper explicitly computes the transition densities of a spectrally negative stable process with index greater than one, reflected at its infimum. First we derive the forward equation using the theory of sun-dual semigroups. The resulting forward equation is a boundary value problem on the positive half-line that involves a negative Riemann-Liouville fractional derivative in space, and a fractional reflecting boundary condition at the origin. Then we apply numerical methods to explicitly compute the transition density of this space-inhomogeneous Markov process, for any starting point, to any desired degree of accuracy. Finally, we discuss an application to fractional Cauchy problems, which involve a positive Caputo fractional derivative in time
    • 

    corecore