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Abstract

In this work, we consider the numerical solution of a distributed order
subdiffusion model, arising in the modeling of ultra-slow diffusion processes.
We develop a space semidiscrete scheme based on the Galerkin finite ele-
ment method, and establish error estimates optimal with respect to data
regularity in L2(Q) and H'(2) norms for both smooth and nonsmooth ini-
tial data. Further, we propose two fully discrete schemes, based on the
Laplace transform and convolution quadrature generated by the backward
Euler method, respectively, and provide optimal L2(f2) error estimates,
which exhibits exponential convergence and first-order convergence in time,
respectively. Extensive numerical experiments are provided to verify the
error estimates for both smooth and nonsmooth initial data.
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1. Introduction

We consider the following initial boundary value problem for a dis-
tributed order time fractional diffusion equation for u(z,t):
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Dl[fl]u—Auzo in Q x (0,71,
u=0 on dQ x (0,77, (1.1)
u(0) =v in Q,

where € is a bounded convex polygonal domain in R? (d =1,2,3) with a
boundary 0€, v is a given function on 2, and T > 0 is a fixed value. Here,
Dy‘ J4 denotes the distributed order fractional derivative of u in time # (with
respect to p) defined by

1
[N}u — au a o
D u (1) /0 O u(t)u(a) dov,

where 0f'u, 0 < a < 1, is the Caputo derivative of order « in ¢, defined by

16, p. 91
[16], p. 91] )

o) = Fr /O (1 — s)=°u(s) ds,

where I'(-) denotes Euler’'s Gamma function. In this paper we consider a
weight function p € C[0,1] with 0 < < 1 and p(0)u(1) > 0.

In the last few decades, fractional calculus has been extensively studied
and successfully employed to model subdiffusion, in which the mean squared
variance grows slower than that in a Gaussian process. The subdiffusion
model involves a Caputo derivative 9;°u of order ap € (0,1) in ¢

% —Au=f inQx(0,T] (1.2)
describes subdiffusion processes. The model (L2) is recovered from (L)
with a singular weight u(a) = §(a — ), the Dirac delta function at «q.
Physically, subdiffusion can be characterized by a unique diffusion exponent
known as the Hurst exponent [3]. In practice, the physical process may not
possess a unique Hurst exponent, and the model (LI]) provides a flexible
framework for describing a host of continuous and nonstationary signals
[3, 4, 29]. It is often employed to describe ultraslow diffusion, where the
mean squared variance grows only logarithmically with time.

In recent years, the theoretical study of problem (LI]) has attracted
some attention. Kochubei [17] made some early contributions to the rigor-
ous analysis of the model (LLI]), by constructing fundamental solutions and
establishing their positivity and subordination property. Mainardi et al.
[22] studied the existence of a solution, asymptotic behavior, and positivity
etc. Meerschaert and Scheffler [25] gave a stochastic model for ultraslow
diffusion; see also [31]. Luchko [21] showed a weak maximum principle for
the problem. Li et al [I§] established a sharp asymptotic behavior of the
solution for ¢ — 0 and ¢ — oo, in the case of continuous density p with
(1) > 0; see also [I] for further discussions.
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The solution to (L)) is rarely available in closed form, which necessi-
tates the development of efficient numerical schemes. Despite the extensive
studies on ([[.2]), there are only very few studies [6, (15, 26} 9] [7] on (LI]).
Diethelm and Ford [6] developed a numerical scheme for distributed order

fractional ODEs. It approximates DE“ }u(t) by quadrature. This technique
was also employed to solve nonlinear distributed-order fractional ODEs in
[15], but without any analysis. Recently, Morgado and Rebelo [26] devel-
oped an implicit finite difference method for (II]) with a Lipschitz nonlin-

ear source term. The scheme approximates Dy‘ ]u(t) by quadrature together
with the backward finite difference in time, and the second-order finite dif-
ference in space. Its stability, and an error estimate O(h?+7+ (6a)?) (with
h,7 and da being the mesh size, time step size and step size for quadra-
ture rule, respectively) were established by assuming that the solution u
is C2 in time and C* in space and pu(«) is sufficiently regular. See also
[9] a high-order difference scheme with v = 0, and also [7]. The regularity
requirement is restrictive. The development of numerical schemes for (I.1))
with nonsmooth data and their rigorous analysis have not been carried out,
despite its importance, e.g., in inverse and optimal control problems [14].

In this work, we develop a Galerkin finite element method (FEM) for
problem (LI)). It is based on the finite element space X} of continuous
piecewise linear functions over a family of shape regular quasi-uniform par-
titions {7p, fo<n<1 of € into d-simplexes, where h is the mesh size. Then the
space semidiscrete Galerkin FEM is given by: find uy(t) € X} such that

(DEM]U}MX) + a(”h)X) = 07 \V/X € th T >t> 07 (13)
with u(0) = vy, where (-,-) denotes the L?(Q)-inner product, a(u,w) =
(Vu, Vw) for u, w € H}(Q), and v, € X}, is an approximation of v. Further,
we develop two fully discrete schemes based on the Laplace transform and
convolution quadrature generated by the backward Euler method.

Our main contributions are as follows. First, in Theorem 2.1l we es-
tablish sharp regularity estimates for problem (L.I]). Second, in Theorems
BI and B2l we derive optimal error estimates for the semidiscrete scheme
([L3). Third, we develop a fully discrete scheme based on the Laplace
transform, using a contour representation of the semidiscrete solution with
a hyperbolic contour and trapezoidal quadrature. We show its exponen-
tial convergence for a fixed time ¢, c¢f. Theorem LIl Last, we develop a
second fully discrete scheme based on convolution quadrature, generated
by the backward Euler method, and in Theorem [5.3] establish a first-order
convergence. All these error estimates are nearly optimal and expressed in
terms of the data regularity directly.

The model (I.T]) is closely related to parabolic equations with a positive
type memory term, for which there are many studies on numerical schemes
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based on convolution quadrature [19] 20l [5] and Laplace transform [27, 28]
32]. These interesting works have inspired the current work. However, they
do not cover (L.1]), due to the general kernel function involved. Instead, we
shall opt for a direct strategy by bounding the kernel function.

The rest of the paper is organized as follows. In Section 2], we recall the
solution theory of the model (LI]). In Section[3], we develop a space semidis-
crete Galerkin scheme. Two fully discrete schemes are given in Sections [4]
and [Bl Finally, to verify the theory, we present in Section [6] some numeri-
cal experiments. Throughout, the notation ¢, with or without a subscript,
denotes a generic constant, which may differ at different occurrences, but
it is always independent of the mesh size h, the number N of quadrature
points, and time step size 7. Further, we denote by || - || the L?(€) norm.

2. Solution Theory

In this part, we discuss the solution theory of problem (LI]). We denote
by ~ the Laplace transform. Next we denote by A the operator —A with a
homogeneous Dirichlet boundary condition with a domain D(A) = H}(Q)N
H?(Q). Tt is known that the operator A generates a bounded analytic
semigroup of angle /2, i.e., for any 0 € (x/2,7) [10, p. 321, Prop. C.4.2]

[(zI + A)7Y < [S(2)] 7 < |zsin(0)|F Vze X, (2.1)

where 3j is a sector with the origin excluded, i.e., ¥y = {z € C: |arg(z)| <
60}, 3 = g \ {0}. Then by (L)) and the relation 02u = z°u — 2~ 1u(0)

zw(2)u(z) + Au(z) = w(z)v,
with w(z) = fol 297 1u(a) da. Hence, u(t) is represented by

u(t) = S(t)v := L e H(2)v dz, (2.2)
27 To.s

where H(z) = (zw(z)I + A)"'w(z), and g5 = {z € C: |z| = §,|arg 2| <
}Uu{z€C:z=pet? p>6}.

Now we give a few properties of w(z). The first is the sector-preserving
property, since z* € ¥y for any o € (0,1) and z € Xy.

LEMMA 2.1. Let 0 € (7/2, 7). Then zw(z) € ¥y for all z € ¥y.
The second result is an upper bound on w(z).

LEMMA 2.2. Let p € C[0,1] with > 0. Then there holds
[w(2)| < llellcpoy (2l = 1)/ (2] Inz]).

The third result gives a lower bound on zw(z).
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LEMMA 2.3. Let 0 € (w/2,7) with u(0)p(1) > 0. Then there exists a
constant ¢ > 0 dependent only on 6 and p such that for any z € X,

[zw(2)| = e(|2] = 1)/In[], (2.3)
|2lw(lz]) = |zw(z)] = clz|w(]z]). (2.4)

Proof. Letz=re¥. Using u(1) >0 and pu € C[0,1], we can find a
small €; > 0 such that minyey—¢, 1) (@) > 01 > 0. Thus for r > 1, there

holds fol rou(a)da > fll_el rou(a)da > 6 fll_el r®da > €16 fol r®da.
Similarly, we may find a small ez > 0 such that min,gg,e, pt(r) > 2 > 0

and then for all » < 1, there holds fol r*u(a) da > €309 fol r® da. Hence for
p € (O —m,m—0), we get for ¢y = min(e101, €202)

1 1
|zw(2)] > R(zw(z))> cos(m — 9)/0 ru(a) da > ¢ cos(m — 9)/0 r®do.

It suffices to consider ¢ € [r — 6, 6]. Since p(0) > 0, there exists a small
€0 > 0 such that min,¢[g ¢, cos(am)p(a) = dp > 0, and thus

€0 1
R(zw(2)) 2/0 r® cos(ap)u(a) da—/ | cos(ap)|pu(a) da

€0

€0 1
> 6 /0 r dac—||ullcpo. / v da
€0

> —(Inr)~" [do — 70 + llullcpay)] -
Consequently,

1
u(a)] 2 Rew(e) = 2 [ rda e <o =5 o/ (2000 + Il cpa) Ve
0

Similarly, (23] holds for » > ry and ¢ € [r — 6,6], thereby showing
([23). The estimate (2.4) follows from ||ullcp 1] fol r®da > fol rou(a) da =
|z|w(|z|) and the inequality |zw(z)| < |z|w(|z]). O

Now we give the stability of problem (LTI).

THEOREM 2.1. Let p € C[0,1] with p > 0 and p(0)u(1) > 0. Then
the solution u to problem (1)) satisfies for t € (0,T] and v = 0, 1:

1A ST (#)ol] < ept™™Vea(8) o]l v € L*(Q),m >0, (2.5)

| A S (t)o|| < ct=™H1Vho (1)1 V|| Av||, v € D(A),v +m > 1, (2.6)

where (1(t) = (In(2T/t))™!, £2(t) = In (max(t™1,2)) and e¢r > 0 may de-
pendon d, Q, u, M, m and T.
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P r o o f. The existence and uniqueness of a weak solution was shown
in [I8], and it suffices to show (23] and (2.6). First, by (2.1, we have
IH)|| = |(zw(z)I + A)7H||w(z)] < M/|z| for all z € %j. Let t > 0,
0 € (m/2,m), 5 > 0. We choose § = ¢~! and denote for short I' = I'y 5. First
we derive ([2.5]) for v =0 and m > 0. By (2.2)), we deduce

156 (1) = Hi / e () ds
27'('1 r

0
<ec </ rm—lertcose dT—i—/ ecoswt—m dl[)) < ct™ ™,
t—1 —0

Next we prove (23] for v = 1 and m > 0, by taking 6 = 27/t in I'. By
applying A to (2.2]) and differentiating with respect to ¢ we arrive at

AST™ (1) = % /F 2" AH (2) dz. (2.7)

<e /F |2 PR H ()] |dz]

Since AH(2) = A(zw(2)I+A) 1w(z) = (I—zH(2))w(z), LemmaB22 yields
|AH (2)|| < clw(z)] < c(|z] —1)/(]z|In |2]) for all z € £j,. Hence (27 gives

—1 o —1
HAS(m)(t)” < C/ ‘Z|m |Z| e?R(z)t |d2’| < C/ rm—lr erteost g
r |z| In | 2] 5 Inr

—m(S -1 1 2T cos
+ et —— e dp =1+11I.
In 6 —0
Since § > 2, we can bound the first term I by

I< c/ r"™(In r)_le”mse dr < cly (t)/ rmertcost qp < cTt_m_lﬁl(t).
) )

The second term I7 is bounded by IT = cpt™™ (5 — 1)/In§ < ept ™™ 1y (t).
This shows (Z.5]). To prove (Z.6) with v = 0, we choose § = ¢t~!. Then,

1 1
(m) _ m ozt [y _ = m—1 zt A—IH A )
S (t) o1 ). 2Me* H(z)vdz 51 /. 2 ez (z)Avdz
Since zA™1H(z) = A~ —(2w(z2)I+A)~ ! and [ 2™ te* dz = 0 for m > 1,

we have

1 1
(m) — m—1 _zt - m—1 _zt -1
ST (t)v 5t Fz e“vdz o Fz e (zw(z)] + A) " dzAv
1
= —%/Fzm_le”(zw(z)f—i-/l)_l dzAv.

By @I) and Lemma 23] we obtain ||(zw(2)I + A)7|| < M|zw(2)|7! <
c(]z| = 1)7'In|z|. This and the monotonicity of f(x) = —In(x)/(1 —x) on
the positive real axis R yield
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I8 0ol < ([ 11O )1 + ) ) o)
r

> ! Int~!  r?
<c (/ ertcosgrm_l—nrl dr +t=™ _nl / ooV d?[)) || Av|
t_l T — t - 1 _9

<ct™™  n(t (1 — )7 Avl|.

For t71 > 2, In(t71)/(1 —¢) <2In(¢t71), and for t71 < 2, In(¢t71)/(1 —t) =
In(t)/(t —1) < 2In(2). Thus [|SU (t)v]| < ct=™+1ly(t)||Av|. Last,
with v = 1 is equivalent to (2.5 with v = 0 and v by Awv. O

3. Semidiscrete Discretization by Galerkin FEM

Now we discuss the space semidiscrete scheme ([L3]) based on the Galerkin
FEM. On the space X}, we define the L?(Q2) projection Py, : L?(Q) — X,
and the Ritz projection Ry, : H} () — X, respectively, by

(Prp,x) = (¢, x) VX € Xp,
(VRap, Vx) = (Ve, VX)) Vx € X
With the discrete Laplacian Ay : X, — X defined by —(App,x) =
(Vp,Vx) for all p, x € X3, and A, = —Ay, (L3) can be rewritten as
Dy (t) + Apun(t) = 0, t > 0 (3.1)

with up(0) = v, € Xp,. For the error analysis, we employ an operator trick
[8]. To this end, we first represent u;, by

1

up(t) = Sp(t)vp, == — e (zw(2)I + Ap)tw(2)vy, dz. (3.2)
2mi To.s
Now we introduce the error function e(t) := wu(t) — up(t), which, by
(Z2) and ([32), is given by
1 . ~ R
e(t) = 5= | w2)(@(z) - Gn(2)) dz, (3-3)
Tl Fg}g

with §(2) = (zw(2)I + A)~tv and Py (2) = (2w(2)I + Ap) "' Pyv. The next
lemma shows a bound on ¢, — @. It follows from Lemma 27| similar to [2,
Lemmas 3.3 and 3.4], and hence the proof is omitted.

LEMMA 3.1. Let v € L*(Q), z € Xy with 0 € (7/2,7), P(z) =
(zw(2)I + A)~Yv and @y, (2) = (2w(z)I + Ap) "1 Pyv. Then there holds

18(2) = Gu(2)ll + hlIV(@(2) = Gu(2))Il < ch?|J].

Now we can state an error estimate for nonsmooth data v € L%(Q).
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THEOREM 3.1. Let u and uj, be the solutions of problem (LIl and
@BI) with v € L*(Q) and v, = Pyv, respectively. Then for t > 0 and
¢1(t) = In(2T/t)~1, there holds

() = un (@) + 2]V (u(t) = un(t)|| < exh?t= i (8)]o]].
P roof By 33), with § =27/t in T’y 5, and Lemmas 3.1 and 2.2]
o -1 b -1
[Ve(t)] < ch/ erteosO T — 2 gy +ch/ e2TC°S¢5—d¢|yv|y =T +1I.
5 rinr _9 Ind

Now the first term I can be bounded by

I<ch /OO O ol < [T sl < epht=1, (0 o]
- s Inr ~ Ind Js a9 ! ’

and the second term I by

crh o 2T cos 1) -1
171 < cosvd < ht™ 01 (¢t .
=1ns 96 1/’”“” > Cr 1( )||U||

Thus the bound on ||Ve(t)| follows. The L? estimate is similar. 0

Next we turn to the case of smooth data Av € L(Q).

THEOREM 3.2. Let u and up be the solutions of problem (1)) and
B1) with v € D(A) and v, = Rpv, respectively. Then for t > 0,

lut) = un(@)l| + RV (u(t) = un®)] < ch?||Av]].

P r o o f. Like before, we take 6 € (7/2,7) and § = 1/t in the contour
I'g.5. Then the error ep(t) = u(t) — up(t) can be represented by
1
en(t) = / e*'w(2) ((zw(z)I + A)~ = (zw(2)I + Ap) "' Ry) v dz.
Tos

"~ 2mi
Using w(2)(zw(2)I + A)~t = 27 — 27 (zw(2)I + A) 71 A, we deduce
1 1~ ~
) =5 ([ @) - o as + |
1 To,s To,s
where 3(2) = (zw(2)I + A)~tAv and @(2) = (2w(2)] + Ap) LA Rpv.
Then Lemma [31] and the identity Ap R, = Pr A give

18(2) — @u(2)|| + BIV(B(2) — Bu(2))]| < ch®||Av|.
Now it follows that

e* 2 (v — Ryv) dz),

e}

0
len(®)]| < ch?| v ( [ttt [ w) < ch?|| v,
= _

which gives the L%-estimate. The H! estimate is analogous. O
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REMARK 3.1. The estimate for v € L?(Q) deteriorates like t~1¢;(¢) as
t — 0T, which agrees with Theorem Il The factor t~1¢;(¢) is different
from that for subdiffusion [12] and multi-term counterpart [11]. For Av €
L?(£2), the estimate is uniform in time.

4. Fully Discrete Scheme I: Laplace Transform

The first fully discrete scheme is based on Laplace transform, by apply-
ing a quadrature rule to the representation ([B8.2)). We follow [24] 27| 28] 32]
and deform the contour I'g 5 to be a curve with a parametric representation
2(&) == A1 +sin(i§ — v)), (4.1)
with A > 0, ¢ € (0,7/2) and £ € R. The optimal choices of A and ¢ will be
given in Lemma [£4]l This deformation is valid since it does not transverse
the poles of H(2)v = (zw(z) + Ap) ~tw(2)v, cf., Lemmas BT and L3l With
z = x + 1y, the contour (41 is the left branch of the hyperbola
(2 = X)/(Asing))® = (y/(Acos$h))* = 1,
which intersects the real axis at = A(1 4 sin®) and has asymptotes
y = (A — ) cot . Now we can represent uy(t) by

un(t) = / et de (42)

with the integrand g(,t) being defined by
9(&t) = (2m1) e @ (2w () + Ap) " w(2(9)Z (Qvn.  (4.3)

Now we describe the quadrature approximation. By setting z; = 2(§;)
and zj := 2/(§;) with § = jk and k being the step size, we have

I ~
Un(t) = 5~ > ente,
j=—00
and the truncated quadrature approximation
N
k o~
Unn(t) = o Z 't (4.4)
j=—N

with qgj = (zjw(zj)I + Ap)? w(zj)vy. To compute Uy p(t), we need to
solve only N+1 elliptic problems, instead of 2N +1, by exploiting conjugacy:

2y =%, w(z—j) = w(z—j), ¢—j = ¢4, j = 1,--- ,N. Indeed, since zg- =
2'(&5) = iXcos(i& — v), with ¢; = Acos(i§; — v), [@F) is reduced to

N
k ~ k o
Un,n(t) = %ezotéboCo +— PIRLICEROTe)
j=1

Hence we solve the following complex—valued elliptic problems
(zjw(z;)I + Ap) ¢j = w(zj)vy, 7 =0,...,N.
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Next we define a strip by S, = {p=&+in: £ € R, n € (=b,a)}. The
following lemma gives the quadrature error [23] [32, Theorem 2.1].

LEMMA 4.1. Let g be an analytic function in a strip S, for some
a,b > 0, and I and Iy, for k > 0, be defined by I = [ g(z)dz and
I, = kZ?‘;_oo g(jk), respectively. Furthermore, assume that g(z) — 0
uniformly as |z| — oo in S, 4, and that there exist My, M_ > 0 such that

e} [e.e]

lim lg(x +ir)|de <My and lim lg(z —is)|dx < M_.

r—=a” J_so s—=b™ ) o
Then with Et = M, /(e**™/% —1) and E~ = M_/(e®*™/% — 1), there holds
I - I <ET+E.

The next lemma gives one crucial estimate on the map z(p) over the
strip S,p. Even though the hyperbolic contour (.I]) has been extensively
used, the estimate on the map z(p) below seems to be new.

LEMMA 4.2. Let p=¢&-+in with &, n € R. Then witha =7w/2—1 —€
and b =1 — ¢, for small ¢ > 0, there holds

z(p) € ¥r—y and |z'(p)||z(p)|_1 < ce ! Vp € 30,,07 (4.5)
2(p) € Snee and | (p)l|2(p)| T < Vp € Spy. (4.6)

Proof. Forp=¢+in with £, n € R, then the image z(p) in the pa-
rameterization (4.]) is given by z(p) = A(1—sin(¢)+n) cosh(§))+i\ cos(¢ +
n) sinh(¢), and its derivative 2’(p) is given by 2'(p) = A cosh € cos(v) + 1) —
isinh ¢ sin(¢ + n). By writing z = x + iy, it can be expressed as the left
branch of the hyperbola ((z — A)/(Asin(y +1)))>=(y/(Acos(¢) + n)))? = 1.
It intersects the real axis at = A\(1 —sin(¢) + 7)) and has the asymptotes
y = +(x — A\) cot(v) +n). Next we show (&5) and (£8). First, for p € Sy,
ie., n € [0,al, z(p) lies in the sector X _y. Since ¢ :=n+1 € (Y, 7/2—¢),
and sin(7/2 —€) ~ 1 — €2/2 < 1 — €2/3 for small €, we have for all £ € R

2'(p) 2 _ ‘ cos(p) cosh(§) — isin(yp) sinh(&) 2
2(p) (1 — cosh(¢)sin(yp)) + isinh(&) cos(p)
cosh?(€) —sin?(p)  cosh(&) + sin(p) - 1+ sin(yp)

~ (cosh(§) —sin(p))2  cosh(€) —sin(p) — 1 —sin(yp)
2
<— = —6e2
S1-(1-e2/3) ¢
Hence ([&F) holds true. For p € Sp, i.e., n € [—b,0], z(p) lies in Y — ()
C Y;—.. Further, since ¢ :=n+ 11 € (¢,1), for all £ € R
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| (P)P2(p)[ 7% < (1 +sin()) /(1 = sin(p)) < (1 +sin(y))/(1 — sin(v)).
Then the desired result (4.6) follows directly. O

The next result gives analyticity of and an estimate on g(&,t) on S .

LEMMA 4.3. Let p=£¢+1in with &, n € R, a and b be defined as in
Lemmal4.2, and g(p,t) be defined by (&3)). Then g(p,t) is analytic on the
strip S, 3, and there holds

IG(p, )] < et AXU—IUHM OO 4 || p € Sy (4.7)

Proof. Forp=¢+in with £, n € R, z(p) in (4I]) is given by
z(p) = A(1 —sin(yp + n) cosh(§)) + i\ cos(¢) 4+ n) sinh(€).

By Lemmas and 211 z(p)w(z(p)) € Xr—¢, and thus the function

3p.t) = (1) 'SP ()w(=p) + A w(=(p) 2 (P

is analytic in S, 5. It suffices to show (&T). For p € Sop, by 0), z(p) €
Yr—e. By Lemma 2] z(p)w(z(p)) € Xr—.. By 21), for small € >0

(=T + AL < e/IS()] < ef [ sin(r — )] < c/(J2le) Yz € 3.
For any p € So, R(2(p)) = M(1 — sin(¢ + n) cosh(€)). By Lemma 2.1},

15, )] < ce™EP 1 (pyw(z(p))| [|(2(p)w(z(p) + A) | val]
< Ce—leA(l—sin(¢+n) COSh(f))t|Z/(p)||Z(p)|_1||'Uh||-

This and ([@6) yield T). The case p € S, is direct: (&) and Lemma
2.1 imply z(p)w(z(p)) € Xy. Then (@) follows from (L5 and ZI). O

Now we can give an error estimate on the approximation Uy .

LEMMA 4.4. Let up(t) and Uy (t) be defined in (4.2) and (d.4), re-
spectively, and the contour be parametrically represented by (41l). Then
with the choice k = co/N and A = ¢1N/t, there holds

lun(t) = Unp(®)] < ce™ Mo (4.8)

Proof. Let up, —Unp = (up, — Up) + (Up — Unp) =2 Eq + Ey. Let
a=7/2—1—¢eand b=1 —e. For p=¢+ia, zw(z) lies in Xy for some
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0 € (n/2,7). Since cosh& > 1+ ¢2/2 and 1 — sin(m/2 — €) < ¢ for small
€ > 0, the choice A = ¢; N/t and Lemma .3 yield

| [ it iaag] < et [ etz geju|
o 0

< Ce—leclNe /OO e—clein(ﬂ/2—e)§2/2 d¢ thH
0
< CE—IN—1/2601N5 thH
By Lemma [41] for k = ¢g/N we have
|EF]| < cc ' N=2em CrlvmafamceiN g, |

Next we bound the error due to the lower half. For the choice p = £ — ib,
A = c1 N/t and by the inequality cosh& > 1+ ¢2/2, we deduce

‘ / |/g\(€ _ 1b)|d€ < 06_1/ 6clN(l—sin(e) cosh(§)) df ”vh”
0

—0o0

< Ce—leclN(l—sin(e)) /oo e—clein(5)§2/2 d¢ thH
0
< 06_3/2N_1/2661N(1_6)”'Uh”.
Then for the choice k = ¢y/N, Lemma [A.1] yields the following estimate
£, < ce 32N—1/2e=@r(—e)/co—c1(1=€))N ||y, || Further, since cosh(£) >
cosh(cg) + sinh(cy) (€ — ¢p) for € > cq, the error || E|| is bounded by

Bl < oe”t [ oMU eoh@) gl
co

< cé—leclN(l—sin(d;) cosh(co)) /oo e—clein(z/;) sinh(cp)(€—co) df”vhH

co

= ¢/(c1 sin(v) sinh(cg)e) N L ectV[L=sin(w) coshleo)l ), 11

By disregarding ¢ terms, balancing the exponentials in ||Ef[|, | E, || and
|1 E¢||, we get 2 (w/2—1))/co = 2m)/co—c1 = —c1(1—sin(e)) cosh(cp)). Next
we express ¢y and ¢ using ©: cg = cosh™!(2m)/((4m) — 7%)sinv))) and
c1 = (4mp — 72)/ cosh ™1 (27w4p/((4myp — w?) sinep)). Finally we minimize the
ratio B(¢)) = ¢1 —2m1) /¢y with respect to ¢, which achieves the minimum at
1 = 1.1721 and hence, ¢y = 1.0818, ¢; = 4.4920 and B(y)) = —2.32, which
are identical to the values in [32]. Then collecting the balanced asymptotic
bound and [|E |, ||E; || and ||E;||, and choosing € = 1/N yield

- (27
() = Una()]| < e (N3 4 e 3N3 4 N1 2o (Erend,

_ In N
(—2.32+ %5 )N”vh”-

log ||

< ce
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Since 7! Inz < 1/e for z > 1, the L%-stability of P, yields (£8]). O

Last, we give error estimates for the fully discrete scheme (4.4]). It
follows from Theorems B.1] and B.2] and Lemma [4.4]

THEOREM 4.1. Let u(t) be the solution of problem (LIl), and U j(t)
be the approximation ([4.4)), with the parameters chosen as in Lemma [4.4.
Then with ¢1(t) = (In2T/t)~!, the following statements hold.

(a) If Av € L*(Q) and v, = Ryv, then
lu(t) = Unn(®)] < e(e™N + h%)|| Av.
(b) Ifv € L?(Q) and vj, = Pyv, then
lu(t) = Unall < er(e™™ + B2 ea(#) o]

5. Fully Discrete Scheme 1I: Convolution Quadrature

Now we develop a second fully discrete scheme based on convolution
quadrature. We divide the interval [0,77] into a uniform grid with a time
step size 7 = T/N, N € N, with t, = nr, n = 0,...,N. Following
[19} (5], we consider the convolution quadrature generated by the backward
Euler method. The weights {b;}52, are given by [19] W(§) = > 72, b;¢7 =
(l—f)w(l—;g) Then the convolution quadrature approximation is given by:
forn=1,2,...,N: Qun(p) = >i_bn—jp(t;). Then we get a fully discrete
scheme for (LII): with U,? =up, forn=1,2,... N

Qn(Uh — ’Uh) + AhU;Z =0. (5.1)
We denote the generating function E of {8172, by ﬁ(ﬁ) = Z;io B;&l.
Now we analyze (5.0]), following [20]. First we split the error into
" = u(tn) = Uy = (u(tn) — un(tn)) + (un(tn) — Uy).
By Theorems B.1l and B.2] it suffices to bound |jup(t,) — Uj'||. We write

up(tn) — Up = yp(t) = Y, where yp(t) = up(t) — v, and Y)' = Up' — vp,.
First, we derive representations of y;, and Y.

LEMMA 5.1. Let

K(z) = =2z (zw(2)I + Ap) " 4, and x(z) = (1—e*7)/T. (5.2)
Then y;, and Y}' can be represented by

1
yn(t) = —/ e K(2)vpdz and Y = e*n=1 K (x(2))vp, dz,
Los

© 2mi 2mi Jp.

respectively, with the contour I'; = {z € I'g 5 : |S(2)| < 7/7}.
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P r o o f. By definition, y, satisfies Dgu}yh + Apyn, = —Apvyp, with

yn(0) = 0. The Laplace transform gives zw(2)Jn (2)+Anyn(z) = —2~ L Apvp,.
Hence, 3;,(2) = K(z)vp,, with K(z) = —27 1 (zw(2)I + Ay)~ 1A}, and thus
follows the representation of yj(t). Likewise, Y;" satisfies

Qn(Y3) + AY" = —Apv,  with Y2 = 0.
Multiplying both sides by £" and summing in n from 1 to co yield

o

D Qu(YVn)E" + AYi(€) = —¢/(1 = ) Apuy.

n=1

Using the condition Y,? = 0, we have

D QuYR)E =D (b &) (YPE) = (1 = &/r)w((1 — €)/7)Va(9).
n=1 n=0 j=0

Thus, simple calculation shows Y,(&) = (£/7)K((1 — €)/7)vp, and it is
analytic at £ = 0. Then Cauchy theorem implies that for small o

1
Y= TTK((1=&)/T)vn dE.
[ K@ o

h ™ ormi

z

Now, by changing variable £ = e™*7, we obtain

1

Y = 5 '\ K ((1— e 7 /7)up, dz,
where the contour I'g = {# = —In(p)/7 + iy : |y| < m/7} is oriented coun-
terclockwise. The desired representation follows by deforming the contour
FptoI's ={z €Ty :|S(2)| <7/7} O
By Lemma [5.1] we have y(t,) —Y,' = I + I1,, where
1
I= o " K (2)vpdz,
i
1 F0,6\FT (53)
Il = — e*n(K(2) — e *TK(x(2)))vpdz.
27 Jp.

Since |e~*7] is uniformly bounded on I';, we have
K (2) — e K (x(2))|| < e[| K(2) = K(x(2)l| + 1 — e ][ K(2)]|
< || K(z) = K(x(2))[| + e[| | K (2)]
< || K(z) = K(x(2))[| + e,
where the last line, using (2.1]), follows from the inequality
1K () = [2[7H] = I + zw(2) (zw(2) + Ap) 7 < ¢f2] "

Hence, it remains to bound the term || K (z) — K (x(2))||. First we recall
a bound on x(z) = 771(1 — e7*7) [13, Lemma 3.1].
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LEMMA 5.2. Let x(z) = 77 (1 —e*7). Then for all z € T, there hold
X(2) =2 < clzf’rand  eilz] < [x(2)] < el

and x(z) lies in a sector X¢: for some 0’ € (7/2,7).
Next we give one estimate on the approximation x(z)w(x(z)) to zw(z).

LEMMA 5.3. For z € I, there holds
IX(2)w(x(2)) = zw(2)| < er|z[Pw(|z)).

P r o o f. By the intermediate value theorem, for z € I';-, we have

x(2)
/ s s

where z, = nx(z) + (1 — )z with € [0,1]. Next we claim |z,|! < ¢[z|™!
for n € [0,1]. We split I'; into I'; = TS UTS U T, with I'F being the

rays in the upper and lower half plane, and I'¢ is the circular arc. For

° < alx(2) - 2| max |z,

— 2% =«
n€f0,1]

Ix(2)

z € I'¢, Taylor expansion gives z, = z(1 + 772;11(—1)]'%). Since
27| < 1 for 2 € T¢, |2y|7! < ¢|z|7! for z € TS, It remains to con-
sider z € TF. For z = rel™9 with r7 € (§,7/sinf) we have x(z) =
1 (1—ermeosfemirmsing) “and since rrsing < 7, F(x(z)) > 0. Then Lemma
yields |z,| > min(|z,[x(z)|)cos § > c|z|. This shows the desired claim.
Hence, by Lemma [5.2] for z € I'; there holds |f01(x(z)°‘ — 2% p(a)da| <

Jo ()™ = 2%lu(a) da < e7lz| [y |21 p(a) da = erlzPw(|2). o

Next we give an error estimate on the approximation K (x(z)) to K(z).

LEMMA 5.4. For z € I';, there holds ||K(z) — K(x(2))| < cT.

Proof. Let B(z) = 2zK(z). Simple computation shows
B(z) — B(x(2)) = zw(z)((zw(2)] + A) "' = (x(2)w(x(2))] + Ap) ™)

+ (zw(z) = x(2)w(x(2))) (X(2wx()I +Ap) " =T +11.
First, by Lemmas 2.3 and 5.2], there holds |x(2)w(x(2))| > ¢|x(2)w(|x(2)])
> c|zlw(]z]). Further, by Lemma 2.1} (2.1) and Lemma 2.3 we have

[(zw()I + Ap) | < elzw(2)| 7 < eflz|w(]z]) (5.4)
Likewise, in view of Lemmas and 21l and (2.1]), we have
I(x(2)wx ()] + Ap)7H < elx(2)wx(2)] 7" < ell2lw(l2]) 7" (5.5)
Now, by the identity
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(zw()I + Ap) ™" = (x(2)w(x(2) + Ap) ™!
= (zw(2) = x(2)w(x(2))) (2w ()] + Ap) "' (x(2)wx (DI + Ap) 7",
Lemma 23] (5.4)) and (5.5]), the first term I can be bounded by
11| < er|zPw(2])?[|(zw(z)] + Ap) "HH (x(2)wx ()] + Ap)7H| < erl2].
Likewise, by Lemma 5.3 and (5.5)
11| < [w(2) = x(2)wOx () (x(2)w(x ()T + Ap) 7|
< erloPw(|z))w(l2])| 7 < erlzl.
Hence, ||B(z) — B(x(z))|| < er|z|. Last, by Lemma (.2l and ||B(2)|| < ¢,
1K (2) = K(x()] < 127" = x(2)HIBE) + |21 HIB(2) = B(x(2)]
<dz— x|z +er <cr

Now we can state an error estimate for nonsmooth data v € L%(Q).

THEOREM 5.1.  Let up, and U]’ be the solutions of problems (3.Il) and
GI) with v € L%(Q), v, = Pyv and f = 0, respectively. Then there holds

lun(ta) = UR|| < etz o]

P r o o f. It suffices to bound the terms I and /7 in (5.3]). By choosing
§=t,1in sy and (2I)), we bound I by
o

o0
I <ec i eltncost,.—1 dr||vg|| < c7'||vh||/0 eltncost gy < CTt;1||vh||.

T sin 0

Using Lemma [5.4], we deduce

7—s7irn0 rtn cos o cospp—1 —1
ILI]| < erl|vg| oc dr + ee t, - dy | <ct, 7|vn]l
t —_

n

Hence, |lyn(tn) — Y| < crtyt|lonl|, and the estimate follows from U} —
up(tn) =Y, — yn(ty) and the L? stability of P, O

Next we turn to smooth data Av € L?(9).

LEMMA 5.5. Let K*(z) = —z Y(zw(2)I + A)~ L. Then for any z € T';,
153 () = K> (x(2)]| < er(|z] = 1) Ine].
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Proof. Let B%(z) = —(2w(2)I+Ayp)~!. Then by the identity B*(z)—
B*(x(2)) = (x(z)w(x(2))—zw(z)) (zw(2)] + Ap) " (x(2)w(x(2))I + Ap) 7",
Lemmal5.3, and (5.4) and (5.5]), we deduce || B*(2)—B*(x(2))|| < er|w(z)|~*.
Appealing to (5.4) again yields ||B*(z)|| < c|zw(z)|~!, and thus
1> (2) = K ()| < 271 =x(2) THIBE ()] + [x(2)[7HIB%(2) = B (x(2)

< ez = x|l ()7 + erlzw(2)[ T < erfzw(z)| T

Then the desired result follows from Lemma 2.3 O

THEOREM 5.2. Let up, and U} be the solutions of problems (3.1]) and
(GI) with Av € L*(Q) and v, = Rpv, respectively. Then with l5(t) =
In (max(¢t™1,2)),

[un(tn) — UKl < erly(t)]| Av]].

Proof Let K5(z) = —z1 (zw(2)] + A)"". Then
1

271 Jry s\Is

—/ #n (K%(2) — e *"K*(x(2)))Apopdz := I + I1.

Yn(tn)—Y' = e*" K5(2) Apopdz

By LemmalBE, |K%(2) — e *"K*(x(2))|| < erln|z|/(]z| = 1) for z € T';.
With § =t, ", the monotonlclty of f(x) = (1 —2) !Inx yields

-rsm@ 1 0 1 t_l
Hﬂﬂ<meM</ a%manrd+/<@W3ﬁlm>
r—1 —0 1-— tn

n

< (1 =t,) Hn(t, Hr||Apon)).
By @), for 2z € T, [|K*(2)| < c|z| 7 zw(2)|. Now Lemma 2.3 yields

[e.e]

111 < clnenll [ et et 2utr)| ar

T sin @

1 In(t,*
<wMWm/ ”wﬁnrm<cM Ll Aponl.
r— 1-1,
Now the identity A, Ry = Py A completes the proof. O

The next theorem gives error estimates for the scheme (B.II), which

follow from Theorems 311 3.2] 1] and

THEOREM 5.3. Let u and U]} be the solutions of problems (L1l) and
GI) with U }? = vy, respectively. Then the following statements hold.
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(a) If Av € L*(Q) and v, = Ryv, then with (1(t) = In(2T/t)~!
lu(tn) — U || < e(rl2(tn) + h?)|| Av]].
(b) Ifv € L?(Q2) and vy, = Pyv, then with fo(t) = In(max(t~1,2))
lu(tn) = URll < er (7 + h*01(t)) £ ol

6. Numerical Experiments and Discussions

Now we present numerical results to verify the convergence theory.
Throughout, let the domain = (0,1) and consider

(a) v(z) = sin(2rx) € HA(Q) N H (Q);

(b) v=xX(0,1/2) € H'Y?2=¢(Q) with e € (0,1/2), and y the characteristic

function of a set S;

(c) v(z) =2~ * e HY*¢(Q) with € € (0,1/4).
We measure the temporal error by the L? errors |[u(t,) — Uy x(ts) | /||v]| or
[u(tn) —=Up[l/|lv]l, and the spatial error by [lu(t)—u(t)||/||v]| and ||V (u(t)—
up()]|/]|v|]. Throughout we divide the domain €2 into M equally spaced
subintervals with a mesh size h = 1/M. Since the exact solution u(t) is not
unavailable, we compute a reference solution using a finer mesh.

6.1. Numerical results for the semidiscrete scheme. First we exam-
ine the convergence behavior of (L3). Here we fix N = 10 in the Laplace
transform approach such that the error due to time discretization is negligi-
ble. The numerical results are given in Table 1. In the table, rate denotes
the empirical rates when the mesh size h halves, and the numbers in the
bracket denote the theoretical rates. For all cases, the L? and H' norms of
the error exhibit O(h?) and O(h) convergence, respectively, agreeing with
Theorems Bl and B2 The scheme is robust since the convergence rates
hold for both smooth and nonsmooth data. The error increases as t — 0,
due to the weak solution singularity around ¢ — 0, ¢f. Theorem 211

6.2. Numerical results for the fully discrete scheme I. Next we il-
lustrate the convergence of the scheme (4.4]). To make the spatial dis-
cretization error negligible, we fix h at h = 107°. The numerical results are
summarized in Tables 2 and 3 for p(a) = (o —1/2)? and p(a) = Xny2,1 (@),
respectively. The notation r denotes the exponent in the estimate ||u?\,h —
u(ty)|| < Ce ™. The results indicate an exponential convergence with
respect to N, with a rate e 21 and e 214N for u(a) = (a — 1/2)? and
p(a) = x[/2,1)(), respectively, which agree with Theorem [L.Il Note that
even though p(a) = x1/2,1)() does not satisfy the condition p(0)u(1) > 0,
the empirical rates still agree well with the theoretical one, which calls
for further study. The convergence rate is independent of ¢, and thus the
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case

t | M

10 20 40 80 160 320

rate

L2

2.79e-5 7.02e-6 1.76e-6 4.39e-7 1.09e-7 2.70e-8
8.84e-4 4.44e-4 2.22¢-4 1.11e-4 5.23e-5 2.36e-5

2.00 (2.00
1.05 (1.00

Lz

10—3H1

6.38e-3 1.61e-3 4.03e-4 1.0le-4 2.51e-5 6.21e-6
1.41e-1 7.04e-2 3.53e-2 1.76e-2 3.75e-3 1.65e-3

2.00 (2.00
1.07 (1.00

L2

3.97e-5 9.94e-6 2.48e-6 6.21e-7 1.55e-7 3.87e-8
1.26e-3 6.29e-4 3.15e-4 1.55e-4 7.63e-5 3.68e-5

2.00 (2.00
1.01 (1.00

Lz

10—3H1

6.34e-3 1.59e-3 3.96e-4 9.92e-5 2.48e-5 6.18e-6
1.73e-1 8.65e-2 4.32e-2 2.14e-2 1.04e-2 5.06e-3

2.00 (2.00
1.02 (1.00

L2

3.82e-5 9.67e-6 2.44e-6 6.12e-7 1.53e-7 3.79¢-8
1.21e-3 6.13e-4 3.09e-4 1.55e-4 7.33e-5 3.33e-5

2.00 (2.00
1.05 (1.00

Lz

10—3H1

3.48e-3 8.76e-4 2.20e-4 5.49e-5 1.37e-5 3.36e-6
1.49e-1 7.45e-2 3.73e-2 1.86e-2 8.76e-3 3.97e-3

2.00 (2.00
1.07 (1.00

(
(
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
)
)
)
)
)

TABLE

1. Numerical results for the semidiscrete scheme

([@C3) with pu(a) = (a —1/2)2.

case

3 5 7 9 11

13

1.33e-6
4.78e-6
8.30e-5

1.49e-8 1.26e-10 2.20e-12
7.36e-7 2.77e-9 5.45e-11
8.78e-7 3.81le-9 7.55e-11

3.54e-14
4.88e-13
6.43e-13

8.24e-17
2.23e-14
1.23e-14

2.35
1.92
2.26

3.34e-6
1.24e-5
6.99¢-5

3.56e-8 2.85e-10 5.76e-12
8.29e-7 2.31le-9 6.09e-11
1.73e-6 1.09e-8 5.38e-11

8.68e-14
4.78e-13
1.17e-12

1.25e-15
2.18e-14
1.59e-14

2.17
2.02
2.22

102
1073

8.04e-6
3.01e-5
1.16e-4

9.05e-8 6.80e-10 1.39e-11
1.71e-6 3.85e-9 1.26e-10
4.09¢-6 2.65e-8 6.65e-11

2.08e-13
9.22e-13
2.75e-12

3.02e-15
4.21e-14
3.49e-14

2.17
2.04
2.19

TABLE 2. The L? errors for (a)-(c) with h = 1075 and

pla) =

(a — 1/2)2, by the Laplace transform method.

scheme is robust. Interestingly, the smoothness of the initial data does not
affect much the time discretization errors, even for small time, cf. Table 4.

One salient feature of the fully discrete scheme 1 is that it allows com-
puting the solution at large time. This allows one to examine the asymp-
totic behavior of the solution as the time t — oo; see Table 5 and Fig. [l
In particular, one clearly observes the logarithmic decay of the solution [18)
Theorem 2.1]; see also Fig. [l This numerically verifies the ultraslow decay
asymptotics for distributed order diffusion process.
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case|t \ N| 3 5 7 9 11 13 r
1 |4.54e-6 2.30e-7 1.63e-9 1.69e-11 2.36e-13 8.46e-15|2.02
(a) | 1072 |6.21e-5 1.65e-6 3.71e-9 1.07e-10 7.00e-13 2.58e-14(2.16
1073 [8.02e-4 3.61e-6 1.66e-8 4.17e-10 3.10e-12 6.73e-15|2.55

1 |4.78e-6 4.74e-7 2.43e-9 3.44e-11 3.49e-13 1.87e-14]1.94
(b) | 1072 |1.03e-4 1.13e-6 3.58¢-9 8.78e-11 5.04e-13 1.93e-14|2.24
1073 |5.12e-4 4.79¢-6 4.95e-8 5.23¢-10 5.15e-12 5.58e-14|2.29

1 [4.79e-6 5.61e-7 2.75e-9 4.07e-11 3.94e-13 2.23e-14|1.92
(¢) | 1072 |1.18¢-4 6.08¢-7 3.37¢-9 7.22¢-11 2.84¢-13 8.94¢-142.10
1073 |1.09e-4 5.24e-6 6.02¢e-8 5.62e-10 5.95e-12 1.02e-13[2.07

TABLE 3. The L? errors for (a)-(c) with h = 107° and
p(a) = xq1/2,1](@), by the Laplace transform method.

case \ t| 100* 10 100® 1007 107% 107Y
(b) [7.05e-6 9.39e-6 1.58¢-5 1.75e-5 1.81e-5 1.82e-5
(c) |6.39e-6 1.17e-5 1.53e-5 1.68e-5 1.75e-5 1.79e-5

TABLE 4. The L? errors for (b) and (c) with h = 1077,
pla) = (@—1/2)>and N =5 at timet = 107, k =4,...,9,
by the Laplace transform method.

case \ k| 6 8 10 12 14 16 18 |rate
(a) 3.33e-4 2.70e-4 2.26e-4 1.95e¢-4 1.71e-4 1.52e¢-4 1.37e-4|1/k
(c) 1.06e-3 8.54e-4 7.17e-4 6.17e-4 5.41e-4 4.82¢-4 4.34e-4|1/k

TABLE 5. The L? norm of the solution for (a) and (c) with
h =107%, p(a) = (a —1/2)? and N = 10 at time ¢t = 10,
k=16,8,---,18, by the Laplace transform method.

6.3. Numerical results for the fully discrete scheme II. Last we
verify the convergence of the fully discrete scheme 11, i.e., (5.0]). The results
are shown in Tables 6 and 7 for p(a) = (a —1/2)* and p(a) = x1/2.1(a),
respectively. An O(7) convergence is always observed, cf. Theorem [5.3]
To examine more closely its convergence behavior, we consider t = 107,
kE =4,...,9, and at each time ¢, divide the interval [0,¢] into N = 10
subintervals. The scheme works well for the smooth initial data, however,
it works poorly for the singular initial data, cf. Table 8. This behavior
is predicted by Theorem [GI} the error is dominated by the factor 7/t for
L? initial data. In Fig. 2 we plot the ratio |U} — u(7)| /7 versus InT for
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—o—example(a), u(0))=(c-0.5)?
example(c), u(oc)=(oc—0.5)2

-
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FIGURE 1. The L? norm of the solution for (a) and (c
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) at

t=10% k =6,8,--- ,18, by the Laplace transform method.

t\ N| 10 20 40 80 160 320

rate

1 1.82e-5 8.78e-6 4.31e-6 2.12¢-6 1.01e-6 4.74e-7
1072 |8.64c-4 3.91e-4 1.88e-4 9.20e-5 4.55e-5 2.26e-5
1073 |2.17e-2 1.10e-2 5.51e-3 2.76e-3 1.38¢-3 6.92¢-4

1.05 (1.00
1.05 (1.00
0.99 (1.00

1 |4.81e-5 2.32e-5 1.14e-5 5.60e-6 2.67e-6 1.26e-6
1072 |8.11e-3 3.87e-3 1.88¢-3 9.29e-4 4.61le-4 2.30e-4
1073 |1.48e-2 7.46e-3 3.74e-3 1.88e-3 9.39e-4 4.70e-4

1.05 (1.00

1 |5.81e-5 2.81e-5 1.38e-5 6.76e-6 3.23e-6 1.52e-6
1072 |1.01e-2 4.80e-3 2.34e-3 1.15e-3 5.72e-4 2.85e-4
1073 | 7.35e-3 3.66e-3 1.82e-3 9.11e-4 4.55e-4 2.27e-4

1.05 (1.00
1.03 (1.00

)
)
)
)
1.03 (1.00)
)
)
)
1.00 (1.00)

(
(
(
(
1.00 (1.00
(
(
(

TABLE 6. The L? errors for (a)-(c) with h = 1074
u(a) = (a—1/2)2, by convolution quadrature.

and

t\N| 10 20 40 80 160 320

rate

1 12.20e-4 1.06e-4 5.20e-5 2.58e-5 1.28e-5 6.40e-6
1072 |1.76e-2 8.81e-3 4.40e-3 2.20e-3 1.10e-3 5.49e-4
1073 |3.92e-3 1.98¢-3 9.95e-4 4.99e-4 2.50e-4 1.25e-4

1.02 (1.00
1.00 (1.00
0.99 (1.00

1 ]6.52e-4 3.11e-4 1.52e-4 7.53e-5 3.74e-5 1.87e-b
1072 |1.25¢-2 6.26e-3 3.13e-3 1.56e-3 7.82e-4 3.91le-4
1073 |5.76e-3 2.88¢-3 1.44e-3 7.18e-4 3.59e-4 1.79e-4

1.03 (1.00

1 |7.92e-4 3.78e-4 1.85e-4 9.14e-5 4.54e-5 2.27e-5
1072 |7.40e-3 3.71e-3 1.86e-3 9.28¢-3 4.64e-4 2.32e-4
1073 |6.10e-3 3.06e-3 1.53e-3 7.65e-4 3.83e-4 1.91e-4

1.03 (1.00
1.00 (1.00

)
)
)
)
1.00 (1.00)
)
)
)
1.00 (1.00)

(
(
(
(
1.00 (1.00
(
(
(

TABLE 7. The L? errors for (a)-(c) with h = 107*
p(a) = X[1/2,1(@), by convolution quadrature.

and
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smooth initial data. Theorem predicts ||U} — u(7)|| < erln77!. The
log factor ¢2(t) in Theorem [5.2]is confirmed by Fig. 2, and thus it is sharp.

case \ t| 10=* 10> 10°® 10" 10°% 107" rate
(a) [2.42e-3 1.03e-4 7.87e-6 7.59e-7 7.58e-8 7.44e-9[1.01 (1.00)
(c) |7.44e-3 5.67e-3 4.30e-3 3.27e-3 2.49¢-3 1.88e-3|0.12 (0.12)

TABLE 8. The L? errors with A = 107 and N = 10, at
t=10"% k=4,...,9, by convolution quadrature.

4
45 7% ! .

——||U ;—u( I LZ(Q)/T

251

2 . .
10712 10710 108 10
T

FIGURE 2. The L? errors for (a) at t; = 7 = 107%, k =
5, ..., 12, by convolution quadrature.
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