22 research outputs found

    The asymptotic spectrum of graphs and the Shannon capacity

    Full text link
    We introduce the asymptotic spectrum of graphs and apply the theory of asymptotic spectra of Strassen (J. Reine Angew. Math. 1988) to obtain a new dual characterisation of the Shannon capacity of graphs. Elements in the asymptotic spectrum of graphs include the Lov\'asz theta number, the fractional clique cover number, the complement of the fractional orthogonal rank and the fractional Haemers bounds

    The asymptotic spectrum of LOCC transformations

    Get PDF
    We study exact, non-deterministic conversion of multipartite pure quantum states into one-another via local operations and classical communication (LOCC) and asymptotic entanglement transformation under such channels. In particular, we consider the maximal number of copies of any given target state that can be extracted exactly from many copies of any given initial state as a function of the exponential decay in success probability, known as the converese error exponent. We give a formula for the optimal rate presented as an infimum over the asymptotic spectrum of LOCC conversion. A full understanding of exact asymptotic extraction rates between pure states in the converse regime thus depends on a full understanding of this spectrum. We present a characterisation of spectral points and use it to describe the spectrum in the bipartite case. This leads to a full description of the spectrum and thus an explicit formula for the asymptotic extraction rate between pure bipartite states, given a converse error exponent. This extends the result on entanglement concentration in [Hayashi et al, 2003], where the target state is fixed as the Bell state. In the limit of vanishing converse error exponent the rate formula provides an upper bound on the exact asymptotic extraction rate between two states, when the probability of success goes to 1. In the bipartite case we prove that this bound holds with equality.Comment: v1: 21 pages v2: 21 pages, Minor corrections v3: 17 pages, Minor corrections, new reference added, parts of Section 5 and the Appendix removed, the omitted material can be found in an extended form in arXiv:1808.0515

    A generalization of Strassen's Positivstellensatz

    Full text link
    Strassen's Positivstellensatz is a powerful but little known theorem on preordered commutative semirings satisfying a boundedness condition similar to Archimedeanicity. It characterizes the relaxed preorder induced by all monotone homomorphisms to R+\mathbb{R}_+ in terms of a condition involving large powers. Here, we generalize and strengthen Strassen's result. As a generalization, we replace the boundedness condition by a polynomial growth condition; as a strengthening, we prove two further equivalent characterizations of the homomorphism-induced preorder in our generalized setting.Comment: 24 pages. v6: condition (d) in Theorem 2.12 has been correcte

    New lower bound on the Shannon capacity of C7 from circular graphs

    Get PDF
    We give an independent set of size 367 in the fifth strong product power of C7, where C7 is the cycle on 7 vertices. This leads to an improved lower bound on the Shannon capacity of C7: Θ(C7)≥3671/5>3.2578. The independent set is found by computer, using the fact that the set{t·(1,7,72,73,74)|t∈Z382}⊆Z5382 is independent in the fifth strong product powe

    A unified construction of semiring-homomorphic graph invariants

    Full text link
    It has recently been observed by Zuiddam that finite graphs form a preordered commutative semiring under the graph homomorphism preorder together with join and disjunctive product as addition and multiplication, respectively. This led to a new characterization of the Shannon capacity Θ\Theta via Strassen's Positivstellensatz: Θ(Gˉ)=infff(G)\Theta(\bar{G}) = \inf_f f(G), where f:GraphR+f : \mathsf{Graph} \to \mathbb{R}_+ ranges over all monotone semiring homomorphisms. Constructing and classifying graph invariants GraphR+\mathsf{Graph} \to \mathbb{R}_+ which are monotone under graph homomorphisms, additive under join, and multiplicative under disjunctive product is therefore of major interest. We call such invariants semiring-homomorphic. The only known such invariants are all of a fractional nature: the fractional chromatic number, the projective rank, the fractional Haemers bounds, as well as the Lov\'asz number (with the latter two evaluated on the complementary graph). Here, we provide a unified construction of these invariants based on linear-like semiring families of graphs. Along the way, we also investigate the additional algebraic structure on the semiring of graphs corresponding to fractionalization. Linear-like semiring families of graphs are a new concept of combinatorial geometry different from matroids which may be of independent interest.Comment: 25 pages. v3: incorporated referee's suggestion
    corecore