18,185 research outputs found

    Iterative CT reconstruction from few projections for the nondestructive post irradiation examination of nuclear fuel assemblies

    Get PDF
    The core components (e.g. fuel assemblies, spacer grids, control rods) of the nuclear reactors encounter harsh environment due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of the nuclear power plants. The Post Irradiation Examination (PIE) can reveal information about the integrity of the elements during normal operations and off‐normal events. Computed tomography (CT) is a tool for evaluating the structural integrity of elements non-destructively. CT requires many projections to be acquired from different view angles after which a mathematical algorithm is adopted for reconstruction. Obtaining many projections is laborious and expensive in nuclear industries. Reconstructions from a small number of projections are explored to achieve faster and cost-efficient PIE. Classical reconstruction algorithms (e.g. filtered back projection) cannot offer stable reconstructions from few projections and create severe streaking artifacts. In this thesis, conventional algorithms are reviewed, and new algorithms are developed for reconstructions of the nuclear fuel assemblies using few projections. CT reconstruction from few projections falls into two categories: the sparse-view CT and the limited-angle CT or tomosynthesis. Iterative reconstruction algorithms are developed for both cases in the field of compressed sensing (CS). The performance of the algorithms is assessed using simulated projections and validated through real projections. The thesis also describes the systematic strategy towards establishing the conditions of reconstructions and finds the optimal imaging parameters for reconstructions of the fuel assemblies from few projections. --Abstract, page iii

    Vision technology/algorithms for space robotics applications

    Get PDF
    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed

    Integrated Quality Control of Precision Assemblies using Computed Tomography

    Get PDF

    A new cone beam X-ray microtomography facility for 3D analysis of multiphase materials

    Get PDF
    pre-printThree-dimensional x-ray microtomography offers a unique imaging capability. Spatial resolution on the order of ten microns can be achieved with the use of microfocus x-ray generators. Recently, a state-of-the-art, flexible cone beam x-ray microtomography system has been installed at the University of Utah for the quantl1ative analysis of multiphase materials in three dimensions. With the use of 2D cone beam projections rather than 1D slice projections the amount of wasted radiation is reduced. The custom designed facility has the capacity to obtain 2048 x 2048 pixel reconstruction over a 1 0-mm diameter, while also allowing for the imaging of somewhat larger (40-mm) objects. The system is capable of handling high-density materials, even materials having a density as high as 8.0 g/cm3. This unique, one-of-a-kind, instrument will be used to obtain three-dimensional spatial reconstruction for such applications as 3D-liberation analysis, structural examination of particle beds/porous structures, and the examination of air-void systems in concrete structures. The utilization of x-ray microtomography not only will allow for quantitative analysis of multiphase systems but also will allow for textural characterization and the determination of phase continuity. In this paper, we present information regarding the current use of this new facility and review potential applications for this advanced analytical system

    Computer vision

    Get PDF
    The field of computer vision is surveyed and assessed, key research issues are identified, and possibilities for a future vision system are discussed. The problems of descriptions of two and three dimensional worlds are discussed. The representation of such features as texture, edges, curves, and corners are detailed. Recognition methods are described in which cross correlation coefficients are maximized or numerical values for a set of features are measured. Object tracking is discussed in terms of the robust matching algorithms that must be devised. Stereo vision, camera control and calibration, and the hardware and systems architecture are discussed

    Automatic inspection of analog and digital meters in a robot vision system

    Get PDF
    A critical limitation of most of the robots utilized in industrial environments arises due to their inability to utilize sensory feedback. This forces robot operation into totally preprogrammed or teleoperation modes. In order to endow the new generation of robots with higher levels of autonomy techniques for sensing of their work environments and for accurate and efficient analysis of the sensory data must be developed. In this paper detailed development of vision system modules for inspecting various types of meters, both analog and digital, encountered in a robotic inspection and manipulation tasks are described. These modules are tested using industrial robots having multisensory input capability

    Collision-free motion of two robot arms in a common workspace

    Get PDF
    Collision-free motion of two robot arms in a common workspace is investigated. A collision-free motion is obtained by detecting collisions along the preplanned trajectories using a sphere model for the wrist of each robot and then modifying the paths and/or trajectories of one or both robots to avoid the collision. Detecting and avoiding collisions are based on the premise that: preplanned trajectories of the robots follow a straight line; collisions are restricted to between the wrists of the two robots (which corresponds to the upper three links of PUMA manipulators); and collisions never occur between the beginning points or end points on the straight line paths. The collision detection algorithm is described and some approaches to collision avoidance are discussed

    A methodology for exploiting parallelism in the finite element process

    Get PDF
    A methodology is described for developing a parallel system using a top down approach taking into account the requirements of the user. Substructuring, a popular technique in structural analysis, is used to illustrate this approach
    corecore