6 research outputs found

    The Anarchy of Scheduling Without Money

    Get PDF
    We consider the scheduling problem on n strategic unrelated machines when no payments are allowed, under the objective of minimizing the makespan. We adopt the model introduced in [Koutsoupias 2014] where a machine is bound by her declarations in the sense that if she is assigned a particular job then she will have to execute it for an amount of time at least equal to the one she reported, even if her private, true processing capabilities are actually faster. We provide a (non-truthful) randomized algorithm whose pure Price of Anarchy is arbitrarily close to 1 for the case of a single task and close to n if it is applied independently to schedule many tasks, which is asymptotically optimal for the natural class of anonymous, task-independent algorithms. Previous work considers the constraint of truthfulness and proves a tight approximation ratio of (n+1)/2 for one task which generalizes to n(n+1)/2 for many tasks. Furthermore, we revisit the truthfulness case and reduce the latter approximation ratio for many tasks down to n, asymptotically matching the best known lower bound. This is done via a detour to the relaxed, fractional version of the problem, for which we are also able to provide an optimal approximation ratio of 1. Finally, we mention that all our algorithms achieve optimal ratios of 1 for the social welfare objective

    The anarchy of scheduling without money

    Get PDF
    We consider the scheduling problem on n strategic unrelated machines when no payments are allowed, under the objective of minimizing the makespan. We adopt the model introduced in [Koutsoupias 2014] where a machine is bound by her declarations in the sense that if she is assigned a particular job then she will have to execute it for an amount of time at least equal to the one she reported, even if her private, true processing capabilities are actually faster. We provide a (non-truthful) randomized algorithm whose pure Price of Anarchy is arbitrarily close to 1 for the case of a single task and close to n if it is applied independently to schedule many tasks, which is asymptotically optimal for the natural class of anonymous, task-independent algorithms. Previous work considers the constraint of truthfulness and proves a tight approximation ratio of (n+1)/2 for one task which generalizes to n(n+1)/2 for many tasks. Furthermore, we revisit the truthfulness case and reduce the latter approximation ratio for many tasks down to n, asymptotically matching the best known lower bound. This is done via a detour to the relaxed, fractional version of the problem, for which we are also able to provide an optimal approximation ratio of 1. Finally, we mention that all our algorithms achieve optimal ratios of 1 for the social welfare objective

    A New Lower Bound for Deterministic Truthful Scheduling

    Full text link
    We study the problem of truthfully scheduling mm tasks to nn selfish unrelated machines, under the objective of makespan minimization, as was introduced in the seminal work of Nisan and Ronen [STOC'99]. Closing the current gap of [2.618,n][2.618,n] on the approximation ratio of deterministic truthful mechanisms is a notorious open problem in the field of algorithmic mechanism design. We provide the first such improvement in more than a decade, since the lower bounds of 2.4142.414 (for n=3n=3) and 2.6182.618 (for n→∞n\to\infty) by Christodoulou et al. [SODA'07] and Koutsoupias and Vidali [MFCS'07], respectively. More specifically, we show that the currently best lower bound of 2.6182.618 can be achieved even for just n=4n=4 machines; for n=5n=5 we already get the first improvement, namely 2.7112.711; and allowing the number of machines to grow arbitrarily large we can get a lower bound of 2.7552.755.Comment: 15 page

    Efficient Truthful Scheduling and Resource Allocation through Monitoring

    Get PDF
    We study the power and limitations of the Vickrey-Clarke-Groves mechanism with monitoring (VCGmon) for cost minimization problems with objective functions that are more general than the social cost. We identify a simple and natural sufficient condition for VCGmon to be truthful for general objectives. As a consequence, we obtain that for any cost minimization problem with non-decreasing objective μ, VCGmon is truthful, if the allocation is Maximal-in-Range and μ is 1-Lipschitz (e.g., μ can be the Lp-norm of the agents’ costs, for any p ≥ 1 or p = ∞). We apply VCGmon to scheduling on restricted-related machines and obtain a polynomial-time truthful-in-expectation 2-approximate (resp. O(1)-approximate) mechanism for makespan (resp. Lp- norm) minimization. Moreover, applying VCGmon, we obtain polynomial-time truthful O(1)-approximate mechanisms for some fundamental bottleneck network optimization problems with single-parameter agents. On the negative side, we provide strong evidence that VCGmon could not lead to computationally efficient truthful mechanisms with reasonable approximation ratios for binary covering social cost minimization problems. However, we show that VCGmon results in computationally efficient approximately truthful mechanisms for binary covering problems

    The anarchy of scheduling without money

    No full text
    We consider the scheduling problem on n strategic unrelated machines when no payments are allowed, under the objective of minimizing the makespan. We adopt the model introduced in [Koutsoupias 2014] where a machine is bound by her declarations in the sense that if she is assigned a particular job then she will have to execute it for an amount of time at least equal to the one she reported, even if her private, true processing capabilities are actually faster. We provide a (non-truthful) randomized algorithm whose pure Price of Anarchy is arbitrarily close to 1 for the case of a single task and close to n if it is applied independently to schedule many tasks, which is asymptotically optimal for the natural class of anonymous, task-independent algorithms. Previous work considers the constraint of truthfulness and proves a tight approximation ratio of (n + 1)/2 for one task which generalizes to n(n + 1)/2 for many tasks. Furthermore, we revisit the truthfulness case and reduce the latter approximation ratio for many tasks down to n, asymptotically matching the best known lower bound. This is done via a detour to the relaxed, fractional version of the problem, for which we are also able to provide an optimal approximation ratio of 1. Finally, we mention that all our algorithms achieve optimal ratios of 1 for the social welfare objective
    corecore