825 research outputs found

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow

    A 10-year record of Arctic summer sea ice freeboard from CryoSat-2

    Get PDF
    Satellite observations of pan-Arctic sea ice thickness have so far been constrained to winter months. For radar altimeters, conventional methods cannot differentiate leads from meltwater ponds that accumulate at the ice surface in summer months, which is a critical step in the ice thickness calculation. Here, we use over 350 optical and synthetic aperture radar (SAR) images from the summer months to train a 1D convolution neural network for separating CryoSat-2 radar altimeter returns from sea ice floes and leads with an accuracy >80%. This enables us to generate the first pan-Arctic measurements of sea ice radar freeboard for May–September between 2011 and 2020. Results indicate that the freeboard distributions in May and September compare closely to those from a conventional ‘winter’ processor in April and October, respectively. The freeboards capture expected patterns of sea ice melt over the Arctic summer, matching well to ice draft observations from the Beaufort Gyre Exploration Program (BGEP) moorings. However, compared to airborne laser scanner freeboards from Operation IceBridge and airborne EM ice thickness surveys from the Alfred Wegener Institute (AWI) IceBird program, CryoSat-2 freeboards are underestimated by 0.02–0.2 m, and ice thickness is underestimated by 0.28–1.0 m, with the largest differences being over thicker multi-year sea ice. To create the first pan-Arctic summer sea ice thickness dataset we must address primary sources of uncertainty in the conversion from radar freeboard to ice thickness

    Altimetric system: Earth observing system. Volume 2h: Panel report

    Get PDF
    A rationale and recommendations for planning, implementing, and operating an altimetric system aboard the Earth observing system (Eos) spacecraft is provided. In keeping with the recommendations of the Eos Science and Mission Requirements Working Group, a complete altimetric system is defined that is capable of perpetuating the data set to be derived from TOPEX/Poseidon, enabling key scientific questions to be addressed. Since the scientific utility and technical maturity of spaceborne radar altimeters is well documented, the discussion is limited to highlighting those Eos-specific considerations that materially impact upon radar altimetric measurements

    NASA Oceanic Processes Program annual review

    Get PDF
    Current flight projects and definition studies, descriptions of individual research activities, and a bibliography of referred journal articles appearing within the past two years are contained
    • …
    corecore