25,147 research outputs found

    Model-Checking Problems as a Basis for Parameterized Intractability

    Full text link
    Most parameterized complexity classes are defined in terms of a parameterized version of the Boolean satisfiability problem (the so-called weighted satisfiability problem). For example, Downey and Fellow's W-hierarchy is of this form. But there are also classes, for example, the A-hierarchy, that are more naturally characterised in terms of model-checking problems for certain fragments of first-order logic. Downey, Fellows, and Regan were the first to establish a connection between the two formalisms by giving a characterisation of the W-hierarchy in terms of first-order model-checking problems. We improve their result and then prove a similar correspondence between weighted satisfiability and model-checking problems for the A-hierarchy and the W^*-hierarchy. Thus we obtain very uniform characterisations of many of the most important parameterized complexity classes in both formalisms. Our results can be used to give new, simple proofs of some of the core results of structural parameterized complexity theory.Comment: Changes in since v2: Metadata update

    Learning with Clustering Structure

    Full text link
    We study supervised learning problems using clustering constraints to impose structure on either features or samples, seeking to help both prediction and interpretation. The problem of clustering features arises naturally in text classification for instance, to reduce dimensionality by grouping words together and identify synonyms. The sample clustering problem on the other hand, applies to multiclass problems where we are allowed to make multiple predictions and the performance of the best answer is recorded. We derive a unified optimization formulation highlighting the common structure of these problems and produce algorithms whose core iteration complexity amounts to a k-means clustering step, which can be approximated efficiently. We extend these results to combine sparsity and clustering constraints, and develop a new projection algorithm on the set of clustered sparse vectors. We prove convergence of our algorithms on random instances, based on a union of subspaces interpretation of the clustering structure. Finally, we test the robustness of our methods on artificial data sets as well as real data extracted from movie reviews.Comment: Completely rewritten. New convergence proofs in the clustered and sparse clustered case. New projection algorithm on sparse clustered vector

    Efficient Deformable Shape Correspondence via Kernel Matching

    Full text link
    We present a method to match three dimensional shapes under non-isometric deformations, topology changes and partiality. We formulate the problem as matching between a set of pair-wise and point-wise descriptors, imposing a continuity prior on the mapping, and propose a projected descent optimization procedure inspired by difference of convex functions (DC) programming. Surprisingly, in spite of the highly non-convex nature of the resulting quadratic assignment problem, our method converges to a semantically meaningful and continuous mapping in most of our experiments, and scales well. We provide preliminary theoretical analysis and several interpretations of the method.Comment: Accepted for oral presentation at 3DV 2017, including supplementary materia

    Exploratory Analysis of Functional Data via Clustering and Optimal Segmentation

    Full text link
    We propose in this paper an exploratory analysis algorithm for functional data. The method partitions a set of functions into KK clusters and represents each cluster by a simple prototype (e.g., piecewise constant). The total number of segments in the prototypes, PP, is chosen by the user and optimally distributed among the clusters via two dynamic programming algorithms. The practical relevance of the method is shown on two real world datasets

    LASS: a simple assignment model with Laplacian smoothing

    Full text link
    We consider the problem of learning soft assignments of NN items to KK categories given two sources of information: an item-category similarity matrix, which encourages items to be assigned to categories they are similar to (and to not be assigned to categories they are dissimilar to), and an item-item similarity matrix, which encourages similar items to have similar assignments. We propose a simple quadratic programming model that captures this intuition. We give necessary conditions for its solution to be unique, define an out-of-sample mapping, and derive a simple, effective training algorithm based on the alternating direction method of multipliers. The model predicts reasonable assignments from even a few similarity values, and can be seen as a generalization of semisupervised learning. It is particularly useful when items naturally belong to multiple categories, as for example when annotating documents with keywords or pictures with tags, with partially tagged items, or when the categories have complex interrelations (e.g. hierarchical) that are unknown.Comment: 20 pages, 4 figures. A shorter version appears in AAAI 201
    corecore