26 research outputs found

    The ZX calculus is a language for surface code lattice surgery

    Get PDF
    A leading choice of error correction for scalable quantum computing is the surface code with lattice surgery. The basic lattice surgery operations, the merging and splitting of logical qubits, act non-unitarily on the logical states and are not easily captured by standard circuit notation. This raises the question of how best to design, verify, and optimise protocols that use lattice surgery, in particular in architectures with complex resource management issues. In this paper we demonstrate that the operations of the ZX calculus --- a form of quantum diagrammatic reasoning based on bialgebras --- match exactly the operations of lattice surgery. Red and green ``spider'' nodes match rough and smooth merges and splits, and follow the axioms of a dagger special associative Frobenius algebra. Some lattice surgery operations require non-trivial correction operations, which are captured natively in the use of the ZX calculus in the form of ensembles of diagrams. We give a first taste of the power of the calculus as a language for lattice surgery by considering two operations (T gates and producing a CNOT) and show how ZX diagram re-write rules give lattice surgery procedures for these operations that are novel, efficient, and highly configurable

    PyZX: Large Scale Automated Diagrammatic Reasoning

    Full text link
    The ZX-calculus is a graphical language for reasoning about ZX-diagrams, a type of tensor networks that can represent arbitrary linear maps between qubits. Using the ZX-calculus, we can intuitively reason about quantum theory, and optimise and validate quantum circuits. In this paper we introduce PyZX, an open source library for automated reasoning with large ZX-diagrams. We give a brief introduction to the ZX-calculus, then show how PyZX implements methods for circuit optimisation, equality validation, and visualisation and how it can be used in tandem with other software. We end with a set of challenges that when solved would enhance the utility of automated diagrammatic reasoning.Comment: In Proceedings QPL 2019, arXiv:2004.1475

    VyZX: Formal Verification of a Graphical Quantum Language

    Full text link
    Mathematical representations of graphs often resemble adjacency matrices or lists, representations that facilitate whiteboard reasoning and algorithm design. In the realm of proof assistants, inductive representations effectively define semantics for formal reasoning. This highlights a gap where algorithm design and proof assistants require a fundamentally different structure of graphs, particularly for process theories which represent programs using graphs. To address this gap, we present VyZX, a verified library for reasoning about inductively defined graphical languages. These inductive constructs arise naturally from category theory definitions. A key goal for VyZX is to Verify the ZX-calculus, a graphical language for reasoning about quantum computation. The ZX-calculus comes with a collection of diagrammatic rewrite rules that preserve the graph's semantic interpretation. We show how inductive graphs in VyZX are used to prove the correctness of the ZX-calculus rewrite rules and apply them in practice using standard proof assistant techniques. VyZX integrates easily with the proof engineer's workflow through visualization and automation.Comment: 28 pages, 26 figure

    A ZX-Calculus with Triangles for Toffoli-Hadamard, Clifford+T, and Beyond

    Get PDF
    We consider a ZX-calculus augmented with triangle nodes which is well-suited to reason on the so-called Toffoli-Hadamard fragment of quantum mechanics. We precisely show the form of the matrices it represents, and we provide an axiomatisation which makes the language complete for the Toffoli-Hadamard quantum mechanics. We extend the language with arbitrary angles and show that any true equation involving linear diagrams which constant angles are multiple of Pi are derivable. We show that a single axiom is then necessary and sufficient to make the language equivalent to the ZX-calculus which is known to be complete for Clifford+T quantum mechanics. As a by-product, it leads to a new and simple complete axiomatisation for Clifford+T quantum mechanics.Comment: In Proceedings QPL 2018, arXiv:1901.09476. Contains Appendi
    corecore