6,721 research outputs found

    Utilizing Structural Knowledge for Information Retrieval in XML Databases

    Get PDF
    In this paper we address the problem of immediate translation of eXtensible Mark-up Language (XML) information retrieval (IR) queries to relational database expressions and stress the benefits of using an intermediate XML-specific algebra over relational algebra. We show how adding an XML-specific algebra at the logical level of a DBMS enables a level of abstraction from both query languages for information retrieval in XML and the underlying physical storage and manipulation. We picked a region algebra as a basis for defining the structure aware (SA) view on XML in which we can distinguish among different XML entities, such as element nodes, text nodes, words, and determine their containment relation. Region algebras are already well established in semi-structured document processing as shown in an extensive overview of region algebra approaches in this paper. Furthermore, we propose a variant of region algebra that can support ranking operators in an elegant way while staying algebraic. As relevance scores are computed for regions in our region algebra we named it score region algebra (SRA). The benefits of introducing score region algebra are explained on a set of query examples. Besides abstracting from the query language used and the physical implementation, SRA enables a certain degree of abstraction from the retrieval model used and the opportunity to use the query optimization at the logical level of a database. Various retrieval models can be instantiated at the physical level based on the abstract specification of SRA operators. We also discuss numerous region algebra operator properties that provide a firm ground for query rewriting and optimization at the SA level, which is an important premise for the existence of such a logical view on XML

    Relational Approach to Logical Query Optimization of XPath

    Get PDF
    To be able to handle the ever growing volumes of XML documents, effective and efficient data management solutions are needed. Managing XML data in a relational DBMS has great potential. Recently, effective relational storage schemes and index structures have been proposed as well as special-purpose join operators to speed up querying of XML data using XPath/XQuery. In this paper, we address the topic of query plan construction and logical query optimization. The claim of this paper is that standard relational algebra extended with special-purpose join operators suffices for logical query optimization. We focus on the XPath accelerator storage scheme and associated staircase join operators, but the approach can be generalized easily

    Calculus and Algebra for Distributed Data Management

    Get PDF
    The sharing of content by communities of users (e.g., scientists) in a P2P context remains cumbersome. We argue that main reasons for this is the lack of calculus and algebra for distributed data management. We present the ActiveXML language that extends the XML language with features to handle distribution. More precisely, ActiveXML documents are XML documents with a special syntax for specifying the embedding of Web service calls, e.g. XML queries such as XQueries. We also present ActiveXML algebra that extends ActiveXML notably with explicit control of data exchanges. ActiveXML algebra allows describing query plans, and exchanging them between peers

    MonetDB/XQuery: a fast XQuery processor powered by a relational engine

    Get PDF
    Relational XQuery systems try to re-use mature relational data management infrastructures to create fast and scalable XML database technology. This paper describes the main features, key contributions, and lessons learned while implementing such a system. Its architecture consists of (i) a range-based encoding of XML documents into relational tables, (ii) a compilation technique that translates XQuery into a basic relational algebra, (iii) a restricted (order) property-aware peephole relational query optimization strategy, and (iv) a mapping from XML update statements into relational updates. Thus, this system implements all essential XML database functionalities (rather than a single feature) such that we can learn from the full consequences of our architectural decisions. While implementing this system, we had to extend the state-of-the-art with a number of new technical contributions, such as loop-lifted staircase join and efficient relational query evaluation strategies for XQuery theta-joins with existential semantics. These contributions as well as the architectural lessons learned are also deemed valuable for other relational back-end engines. The performance and scalability of the resulting system is evaluated on the XMark benchmark up to data sizes of 11GB. The performance section also provides an extensive benchmark comparison of all major XMark results published previously, which confirm that the goal of purely relational XQuery processing, namely speed and scalability, was met

    Rewriting Declarative Query Languages

    Full text link
    Queries against databases are formulated in declarative languages. Examples are the relational query language SQL and XPath or XQuery for querying data stored in XML. Using a declarative query language, the querist does not need to know about or decide on anything about the actual strategy a system uses to answer the query. Instead, the system can freely choose among the algorithms it employs to answer a query. Predominantly, query processing in the relational context is accomplished using a relational algebra. To this end, the query is translated into a logical algebra. The algebra consists of logical operators which facilitate the application of various optimization techniques. For example, logical algebra expressions can be rewritten in order to yield more efficient expressions. In order to query XML data, XPath and XQuery have been developed. Both are declarative query languages and, hence, can benefit from powerful optimizations. For instance, they could be evaluated using an algebraic framework. However, in general, the existing approaches are not directly utilizable for XML query processing. This thesis has two goals. The first goal is to overcome the above-mentioned misfits of XML query processing, making it ready for industrial-strength settings. Specifically, we develop an algebraic framework that is designed for the efficient evaluation of XPath and XQuery. To this end, we define an order-aware logical algebra and a translation of XPath into this algebra. Furthermore, based on the resulting algebraic expressions, we present rewrites in order to speed up the execution of such queries. The second goal is to investigate rewriting techniques in the relational context. To this end, we present rewrites based on algebraic equivalences that unnest nested SQL queries with disjunctions. Specifically, we present equivalences for unnesting algebraic expressions with bypass operators to handle disjunctive linking and correlation. Our approach can be applied to quantified table subqueries as well as scalar subqueries. For all our results, we present experiments that demonstrate the effectiveness of the developed approaches

    On Region Algebras, XML Databases, and Information Retrieval

    Get PDF
    This paper describes some new ideas on developing a logical algebra for databases that manage textual data and support information retrieval functionality. We describe a first prototype of such a system

    Sound ranking algorithms for XML search

    Get PDF
    Ranking algorithms for XML should reflect the actual combined content and structure constraints of queries, while at the same time producing equal rankings for queries that are semantically equal. Ranking algorithms that produce different rankings for queries that are semantically equal are easily detected by tests on large databases: We call such algorithms not sound. We report the behavior of different approaches to ranking content-and-structure queries on pairs of queries for which we expect equal ranking results from the query semantics. We show that most of these approaches are not sound. Of the remaining approaches, only 3 adhere to the W3C XQuery Full-Text standard

    Report on the first Twente Data Management Workshop on XML Databases and Information Retrieval

    Get PDF
    The Database Group of the University of Twente initiated a new series of workshops called Twente Data Management workshops (TDM), starting with one on XML Databases and Information Retrieval which took place on 21 June 2004 at the University of Twente. We have set ourselves two goals for the workshop series: i) To provide a forum to share original ideas as well as research results on data management problems; ii) To bring together researchers from the database community and researchers from related research fields
    corecore