1,040 research outputs found

    An Efficient Algorithm for Instantaneous Frequency Estimation of Nonstationary Multicomponent Signals in Low SNR

    Get PDF
    A method for components instantaneous frequency (IF) estimation of multicomponent signals in low signal-to-noise ratio (SNR) is proposed. The method combines a new proposed modification of a blind source separation (BSS) algorithm for components separation, with the improved adaptive IF estimation procedure based on the modified sliding pairwise intersection of confidence intervals (ICI) rule. The obtained results are compared to the multicomponent signal ICI-based IF estimation method for various window types and SNRs, showing the estimation accuracy improvement in terms of the mean squared error (MSE) by up to 23%. Furthermore, the highest improvement is achieved for low SNRs values, when many of the existing methods fail.Scopu

    Novel characterization method of impedance cardiography signals using time-frequency distributions

    Get PDF
    The purpose of this document is to describe a methodology to select the most adequate time-frequency distribution (TFD) kernel for the characterization of impedance cardiography signals (ICG). The predominant ICG beat was extracted from a patient and was synthetized using time-frequency variant Fourier approximations. These synthetized signals were used to optimize several TFD kernels according to a performance maximization. The optimized kernels were tested for noise resistance on a clinical database. The resulting optimized TFD kernels are presented with their performance calculated using newly proposed methods. The procedure explained in this work showcases a new method to select an appropriate kernel for ICG signals and compares the performance of different time-frequency kernels found in the literature for the case of ICG signals. We conclude that, for ICG signals, the performance (P) of the spectrogram with either Hanning or Hamming windows (P¿=¿0.780) and the extended modified beta distribution (P¿=¿0.765) provided similar results, higher than the rest of analyzed kernels.Peer ReviewedPostprint (published version

    Space/time/frequency methods in adaptive radar

    Get PDF
    Radar systems may be processed with various space, time and frequency techniques. Advanced radar systems are required to detect targets in the presence of jamming and clutter. This work studies the application of two types of radar systems. It is well known that targets moving along-track within a Synthetic Aperture Radar field of view are imaged as defocused objects. The SAR stripmap mode is tuned to stationary ground targets and the mismatch between the SAR processing parameters and the target motion parameters causes the energy to spill over to adjacent image pixels, thus hindering target feature extraction and reducing the probability of detection. The problem can be remedied by generating the image using a filter matched to the actual target motion parameters, effectively focusing the SAR image on the target. For a fixed rate of motion the target velocity can be estimated from the slope of the Doppler frequency characteristic. The problem is similar to the classical problem of estimating the instantaneous frequency of a linear FM signal (chirp). The Wigner-Ville distribution, the Gabor expansion, the Short-Time Fourier transform and the Continuous Wavelet Transform are compared with respect to their performance in noisy SAR data to estimate the instantaneous Doppler frequency of range compressed SAR data. It is shown that these methods exhibit sharp signal-to-noise threshold effects. The space-time radar problem is well suited to the application of techniques that take advantage of the low-rank property of the space-time covariance matrix. It is shown that reduced-rank methods outperform full-rank space-time adaptive processing when the space-time covariance matrix is estimated from a dataset with limited support. The utility of reduced-rank methods is demonstrated by theoretical analysis, simulations and analysis of real data. It is shown that reduced-rank processing has two effects on the performance: increased statistical stability which tends to improve performance, and introduction of a bias which lowers the signal-to-noise ratio. A method for evaluating the theoretical conditioned SNR for fixed reduced-rank transforms is also presented
    corecore