370 research outputs found

    Glimpses of the Octonions and Quaternions History and Todays Applications in Quantum Physics

    Full text link
    Before we dive into the accessibility stream of nowadays indicatory applications of octonions to computer and other sciences and to quantum physics let us focus for a while on the crucially relevant events for todays revival on interest to nonassociativity. Our reflections keep wandering back to the BrahmaguptaBrahmagupta FibonaccFibonacc two square identity and then via the EulerEuler four square identity up to the DegenDegen GgravesGgraves CayleyCayley eight square identity. These glimpses of history incline and invite us to retell the story on how about one month after quaternions have been carved on the BroughamianBroughamian bridge octonions were discovered by JohnJohn ThomasThomas GgravesGgraves, jurist and mathematician, a friend of WilliamWilliam RowanRowan HamiltonHamilton. As for today we just mention en passant quaternionic and octonionic quantum mechanics, generalization of CauchyCauchy RiemannRiemann equations for octonions and triality principle and G2G_2 group in spinor language in a descriptive way in order not to daunt non specialists. Relation to finite geometries is recalled and the links to the 7stones of seven sphere, seven imaginary octonions units in out of the PlatoPlato cave reality applications are appointed . This way we are welcomed back to primary ideas of HeisenbergHeisenberg, WheelerWheeler and other distinguished fathers of quantum mechanics and quantum gravity foundations.Comment: 26 pages, 7 figure

    From dynamical scaling to local scale-invariance: a tutorial

    Full text link
    Dynamical scaling arises naturally in various many-body systems far from equilibrium. After a short historical overview, the elements of possible extensions of dynamical scaling to a local scale-invariance will be introduced. Schr\"odinger-invariance, the most simple example of local scale-invariance, will be introduced as a dynamical symmetry in the Edwards-Wilkinson universality class of interface growth. The Lie algebra construction, its representations and the Bargman superselection rules will be combined with non-equilibrium Janssen-de Dominicis field-theory to produce explicit predictions for responses and correlators, which can be compared to the results of explicit model studies. At the next level, the study of non-stationary states requires to go over, from Schr\"odinger-invariance, to ageing-invariance. The ageing algebra admits new representations, which acts as dynamical symmetries on more general equations, and imply that each non-equilibrium scaling operator is characterised by two distinct, independent scaling dimensions. Tests of ageing-invariance are described, in the Glauber-Ising and spherical models of a phase-ordering ferromagnet and the Arcetri model of interface growth.Comment: 1+ 23 pages, 2 figures, final for

    A Generalized Version of a Low Velocity Impact between a Rigid Sphere and a Transversely Isotropic Strain-Hardening Plate Supported by a Rigid Substrate Using the Concept of Noninteger Derivatives

    Get PDF
    A low velocity impact between a rigid sphere and transversely isotropic strain-hardening plate supported by a rigid substrate is generalized to the concept of noninteger derivatives order. A brief history of fractional derivatives order is presented. The fractional derivatives order adopted is in Caputo sense. The new equation is solved via the analytical technique, the Homotopy decomposition method (HDM). The technique is described and the numerical simulations are presented. Since it is very important to accurately predict the contact force and its time history, the three stages of the indentation process, including (1) the elastic indentation, (2) the plastic indentation, and (3) the elastic unloading stages, are investigated

    Chemical Reaction Systems, Computer Algebra and Systems Biology

    Get PDF
    International audienceIn this invited paper, we survey some of the results obtained in the computer algebra team of Lille, in the domain of systems biology. So far, we have mostly focused on models (systems of equations) arising from generalized chemical reaction systems. Eight years ago, our team was involved in a joint project, with physicists and biologists, on the modeling problem of the circadian clock of the green algae Ostreococcus tauri. This cooperation led us to different algorithms dedicated to the reduction problem of the deterministic models of chemical reaction systems. More recently, we have been working more tightly with another team of our lab, the BioComputing group, interested by the stochastic dynamics of chemical reaction systems. This cooperation led us to efficient algorithms for building the ODE systems which define the statistical moments associated to these dynamics. Most of these algorithms were implemented in the MAPLE computer algebra software. We have chosen to present them through the corresponding MAPLE packages

    Uncertainty Relation on World Crystal and its Applications to Micro Black Holes

    Full text link
    We formulate generalized uncertainty relations in a crystal-like universe whose lattice spacing is of the order of Planck length -- "world crystal". In the particular case when energies lie near the border of the Brillouin zone, i.e., for Planckian energies, the uncertainty relation for position and momenta does not pose any lower bound on involved uncertainties. We apply our results to micro black holes physics, where we derive a new mass-temperature relation for Schwarzschild micro black holes. In contrast to standard results based on Heisenberg and stringy uncertainty relations, our mass-temperature formula predicts both a finite Hawking's temperature and a zero rest-mass remnant at the end of the micro black hole evaporation. We also briefly mention some connections of the world crystal paradigm with 't Hooft's quantization and double special relativity.Comment: 13 pages, 2 figures, latex

    Noncommutativity and Discrete Physics

    Full text link
    The purpose of this paper is to present an introduction to a point of view for discrete foundations of physics. In taking a discrete stance, we find that the initial expression of physical theory must occur in a context of noncommutative algebra and noncommutative vector analysis. In this way the formalism of quantum mechanics occurs first, but not necessarily with the usual interpretations. The basis for this work is a non-commutative discrete calculus and the observation that it takes one tick of the discrete clock to measure momentum.Comment: LaTeX, 23 pages, no figure

    The oriented swap process and last passage percolation

    Full text link
    We present new probabilistic and combinatorial identities relating three random processes: the oriented swap process on nn particles, the corner growth process, and the last passage percolation model. We prove one of the probabilistic identities, relating a random vector of last passage percolation times to its dual, using the duality between the Robinson-Schensted-Knuth and Burge correspondences. A second probabilistic identity, relating those two vectors to a vector of 'last swap times' in the oriented swap process, is conjectural. We give a computer-assisted proof of this identity for n6n\le 6 after first reformulating it as a purely combinatorial identity, and discuss its relation to the Edelman-Greene correspondence. The conjectural identity provides precise finite-nn and asymptotic predictions on the distribution of the absorbing time of the oriented swap process, thus conditionally solving an open problem posed by Angel, Holroyd and Romik.Comment: 36 pages, 6 figures. Full version of the FPSAC 2020 extended abstract arXiv:2003.0333
    corecore