168 research outputs found

    Design of a monitor and simulation terminal (master) for space station telerobotics and telescience

    Get PDF
    Based on Space Station and planetary spacecraft communication time delays and bandwidth limitations, it will be necessary to develop an intelligent, general purpose ground monitor terminal capable of sophisticated data display and control of on-orbit facilities and remote spacecraft. The basic elements that make up a Monitor and Simulation Terminal (MASTER) include computer overlay video, data compression, forward simulation, mission resource optimization and high level robotic control. Hardware and software elements of a MASTER are being assembled for testbed use. Applications of Neural Networks (NNs) to some key functions of a MASTER are also discussed. These functions are overlay graphics adjustment, object correlation and kinematic-dynamic characterization of the manipulator

    "A Decentralized Operations Concept for the European Payloads on the International Space Station"

    Get PDF
    The European Module Columbus of the International Space Station (ISS) is planned to be launched 2004. For its exploitation phase as well as for the early utilisation of the Space Station starting from 2003 onwards the operations procedures are now being defined in detail and the implementation of specific infrastructure has started. A decentralised operations concept will allow the investigators to perform their experiments using the telescience technique of remote experiment operations whenever feasible. User Support and Operation Centres (USOCs) will act as Facility Responsible Centres (FRC) performing the operations for multi user experiment facilities. The Columbus Control Centre (COL-CC) will perform the Columbus system operations, co-ordinate the European payload operations and provide the European Communications network. This paper gives an overview on the operations concepts and the tasks and set up of the involved sites

    Payload Operations

    Get PDF
    The objective of this paper is to provide the future ISS scientist and/or engineer a sense of what ISS payload operations are expected to be. This paper uses a real-time operations scenario to convey this message. The real-time operations scenario begins at the initiation of payload operations and runs through post run experiment analysis. In developing this scenario, it is assumed that the ISS payload operations flight and ground capabilities are fully available for use by the payload user community. Emphasis is placed on telescience operations whose main objective is to enable researchers to utilize experiment hardware onboard the International Space Station as if it were located in their terrestrial laboratory. An overview of the Payload Operations Integration Center (POIC) systems and user ground system options is included to provide an understanding of the systems and interfaces users will utilize to perform payload operations. Detailed information regarding POIC capabilities can be found in the POIC Capabilities Document, SSP 50304

    Using Distributed Operations to Enable Science Research on the International Space Station

    Get PDF
    In the early days of the International Space Station (ISS) program, and as the organization structure was being internationally agreed upon and documented, one of the principal tenets of the science program was to allow customer-friendly operations. One important aspect of this was to allow payload developers and principle investigators the flexibility to operate their experiments from either their home sites or distributed telescience centers. This telescience concept was developed such that investigators had several options for ISS utilization support. They could operate from their home site, the closest telescience center, or use the payload operations facilities at the Marshall Space Flight Center in Huntsville, Alabama. The Payload Operations Integration Center (POIC) processes and structures were put into place to allow these different options to its customers, while at the same time maintain its centralized authority over NASA payload operations and integration. For a long duration space program with many scientists, researchers, and universities expected to participate, it was imperative that the program structure be in place to successfully facilitate this concept of telescience support. From a payload control center perspective, payload science operations require two major elements in order to make telescience successful within the scope of the ISS program. The first element is decentralized control which allows the remote participants the freedom and flexibility to operate their payloads within their scope of authority. The second element is a strong ground infrastructure, which includes voice communications, video, telemetry, and commanding between the POIC and the payload remote site. Both of these elements are important to telescience success, and both must be balanced by the ISS program s documented requirements for POIC to maintain its authority as an integration and control center. This paper describes both elements of distributed payload operations and discusses the benefits and drawbacks

    Telescience Resource Kit Software Lifecycle

    Get PDF
    The challenge of a global operations capability led to the Telescience Resource Kit (TReK) project, an in-house software development project of the Mission Operations Laboratory (MOL) at NASA's Marshall Space Flight Center (MSFC). The TReK system is being developed as an inexpensive comprehensive personal computer- (PC-) based ground support system that can be used by payload users from their home sites to interact with their payloads on board the International Space Station (ISS). The TReK project is currently using a combination of the spiral lifecycle model and the incremental lifecycle model. As with any software development project, there are four activities that can be very time consuming: Software design and development, project documentation, testing, and umbrella activities, such as quality assurance and configuration management. In order to produce a quality product, it is critical that each of these activities receive the appropriate amount of attention. For TReK, the challenge was to lay out a lifecycle and project plan that provides full support for these activities, is flexible, provides a way to deal with changing risks, can accommodate unknowns, and can respond to changes in the environment quickly. This paper will provide an overview of the TReK lifecycle, a description of the project's environment, and a general overview of project activities

    The NIEHS Environmental Health Sciences Data Resource Portal: Placing Advanced Technologies in Service to Vulnerable Communities

    Get PDF
    BACKGROUND: Two devastating hurricanes ripped across the Gulf Coast of the United States during 2005. The effects of Hurricane Katrina were especially severe: The human and environmental health impacts on New Orleans, Louisiana, and other Gulf Coast communities will be felt for decades to come. The Federal Emergency Management Agency (FEMA) estimates that Katrina’s destruction disrupted the lives of roughly 650,000 Americans. Over 1,300 people died. The projected economic costs for recovery and reconstruction are likely to exceed $125 billion. OBJECTIVES: The NIEHS (National Institute of Environmental Health Sciences) Portal aims to provide decision makers with the data, information, and the tools they need to a) monitor human and environmental health impacts of disasters; b) assess and reduce human exposures to contaminants; and c) develop science-based remediation, rebuilding, and repopulation strategies. METHODS: The NIEHS Portal combines advances in geographic information systems (GIS), data mining/integration, and visualization technologies through new forms of grid-based (distributed, web-accessible) cyberinfrastructure. RESULTS: The scale and complexity of the problems presented by Hurricane Katrina made it evident that no stakeholder alone could tackle them and that there is a need for greater collaboration. The NIEHS Portal provides a collaboration-enabling, information-laden base necessary to respond to environmental health concerns in the Gulf Coast region while advancing integrative multidisciplinary research. CONCLUSIONS: The NIEHS Portal is poised to serve as a national resource to track environmental hazards following natural and man-made disasters, focus medical and environmental response and recovery resources in areas of greatest need, and function as a test bed for technologies that will help advance environmental health sciences research into the modern scientific and computing era

    Telescience Support Center Data System Software

    Get PDF
    The Telescience Support Center (TSC) team has developed a databasedriven, increment-specific Data Require - ment Document (DRD) generation tool that automates much of the work required for generating and formatting the DRD. It creates a database to load the required changes to configure the TSC data system, thus eliminating a substantial amount of labor in database entry and formatting. The TSC database contains the TSC systems configuration, along with the experimental data, in which human physiological data must be de-commutated in real time. The data for each experiment also must be cataloged and archived for future retrieval. TSC software provides tools and resources for ground operation and data distribution to remote users consisting of PIs (principal investigators), bio-medical engineers, scientists, engineers, payload specialists, and computer scientists. Operations support is provided for computer systems access, detailed networking, and mathematical and computational problems of the International Space Station telemetry data. User training is provided for on-site staff and biomedical researchers and other remote personnel in the usage of the space-bound services via the Internet, which enables significant resource savings for the physical facility along with the time savings versus traveling to NASA sites. The software used in support of the TSC could easily be adapted to other Control Center applications. This would include not only other NASA payload monitoring facilities, but also other types of control activities, such as monitoring and control of the electric grid, chemical, or nuclear plant processes, air traffic control, and the like

    Tele-archaeology

    Get PDF
    Tele-archaeology, in its basic sense, may be defined as the use of telecommunications to provide archaeological information and services. Two different kinds of technology make up most of the tele-archaeology applications in use today. The first is used for transferring information from one location to another. The other is multi-way interactive knowledge distribution. In this paper we examine the possibilities of tele-archaeology, and offer a general framework to implement this technology. The main positive effect of tele-archaeology is the move towards a real “distributed interactive archaeology”, which means that archaeological knowledge building is a collective and dynamic series of tasks and processes. An individual archaeologist cannot fully explain his/her data because the explanatory process needs knowledge as raw material, and this knowledge does not exist in the individual mind of the scientist but in the research community as a global set

    An Overview of the Microgravity Science Glovebox (MSG) Facility, and the Gravity-Dependent Phenomena Research Performed in the MSG on the International Space Station (ISS)

    Get PDF
    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation, The MSG's unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120, 28, +/-12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion, reaction control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG and an overview of investigations planning to operate in the MSG. In addition, this paper will address possible changes to the MSG utilization process that will be brought about by the transition to ISS as a National Laboratory
    corecore