33,276 research outputs found

    Visualization of 3-D tensor fields

    Get PDF
    Second-order tensor fields have applications in many different areas of physics, such as general relativity and fluid mechanics. The wealth of multivariate information in tensor fields makes them more complex and abstract than scalar and vector fields. Visualization is a good technique for scientists to gain new insights from them. Visualizing a 3-D continuous tensor field is equivalent to simultaneously visualizing its three eigenvector fields. In the past, research has been conducted in the area of two-dimensional tensor fields. It was shown that degenerate points, defined as points where eigenvalues are equal to each other, are the basic singularities underlying the topology of tensor fields. Moreover, it was shown that eigenvectors never cross each other except at degenerate points. Since we live in a three-dimensional world, it is important for us to understand the underlying physics of this world. In this report, we describe a new method for locating degenerate points along with the conditions for classifying them in three-dimensional space. Finally, we discuss some topological features of three-dimensional tensor fields, and interpret topological patterns in terms of physical properties

    Oriented tensor reconstruction: tracing neural pathways from diffusion tensor MRI

    Get PDF
    In this paper we develop a new technique for tracing anatomical fibers from 3D tensor fields. The technique extracts salient tensor features using a local regularization technique that allows the algorithm to cross noisy regions and bridge gaps in the data. We applied the method to human brain DT-MRI data and recovered identifiable anatomical structures that correspond to the white matter brain-fiber pathways. The images in this paper are derived from a dataset having 121x88x60 resolution. We were able to recover fibers with less than the voxel size resolution by applying the regularization technique, i.e., using a priori assumptions about fiber smoothness. The regularization procedure is done through a moving least squares filter directly incorporated in the tracing algorithm

    On the non-local geometry of turbulence

    Get PDF
    A multi-scale methodology for the study of the non-local geometry of eddy structures in turbulence is developed. Starting from a given three-dimensional field, this consists of three main steps: extraction, characterization and classification of structures. The extraction step is done in two stages. First, a multi-scale decomposition based on the curvelet transform is applied to the full three-dimensional field, resulting in a finite set of component three-dimensional fields, one per scale. Second, by iso-contouring each component field at one or more iso-contour levels, a set of closed iso-surfaces is obtained that represents the structures at that scale. The characterization stage is based on the joint probability density function (p.d.f.), in terms of area coverage on each individual iso-surface, of two differential-geometry properties, the shape index and curvedness, plus the stretching parameter, a dimensionless global invariant of the surface. Taken together, this defines the geometrical signature of the iso-surface. The classification step is based on the construction of a finite set of parameters, obtained from algebraic functions of moments of the joint p.d.f. of each structure, that specify its location as a point in a multi-dimensional ‘feature space’. At each scale the set of points in feature space represents all structures at that scale, for the specified iso-contour value. This then allows the application, to the set, of clustering techniques that search for groups of structures with a common geometry. Results are presented of a first application of this technique to a passive scalar field obtained from 5123 direct numerical simulation of scalar mixing by forced, isotropic turbulence (Reλ = 265). These show transition, with decreasing scale, from blob-like structures in the larger scales to blob- and tube-like structures with small or moderate stretching in the inertial range of scales, and then toward tube and, predominantly, sheet-like structures with high level of stretching in the dissipation range of scales. Implications of these results for the dynamical behaviour of passive scalar stirring and mixing by turbulence are discussed
    • …
    corecore