
NASA-CR-201805

c_ , "-'7 _--

Visualization of 3-D Tensor Fields

Principal Investigator: Lambertus Hesselink*

Stanford University, Stanford, California 94305-4035

Phone: (415)723-4850 Email: bert@kaos.stanford.edu

Introduction

Second-order tensor fields have applications in many different areas of

physics, such as general relativity and fluid mechanics. The wealth of multi-

variate information in tensor fields makes them more complex and abstract

than scalar and vector fields. Visualization is a good technique for scientists

to gain new insights from them.

Visualizing a 3-D continuous tensor field is equivalent to simultaneously

visualizing its three eigenvector fields. In the past, research has been con-
ducted in the area of two-dimensional tensor fields, a It was shown that de-

generate points, defined as points where eigenvalues are equal to each other,

are the basic singularities underlying the topology of tensor fields. Moreover,

it was shown that eigenvectors never cross each other except at degenerate

points. Since we live in a three-dimensional world, it is important for us to

understand the underlying physics of this world. In this report, we describe

a new method for locating degenerate points along with the conditions for

classifying them in three-dimensional space. Finally, we discuss some topo-

logical features of three-dimensional tensor fields, and interpret topological

patterns in terms of physical properties.
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Theoretical Background

Definitions

Three-dimensional tensor fields can be represented by 3 x 3 matrices.

Cartesian coordinates these take the following form:

In

Tll(X,Y,Z) T12(x,Y,Z) T13(x,Y,Z) )
T(_)= Tx2(x,y,z) T22(x,y,z) T23(x,y,z) (1)

T13(x,y,z) T23(x,y,z) T33(x,y,z)

Definition 1 A degenerate point of a tensor .field T : E --* _. (R m, Rm),

where E is an open subset of R m , is a point X.o C E where at least two of

the m eigenvalues of T are equal to each other)

Definition 2 (Hyperstreamline) A geometric primitive of.finite size sweeps

along the longitudinal eigenvector field, vt, while stretching in the transverse

plane under the combined action of the two transverse eigenvectors, gt, and

fit2" Hyperstreamlines are surfaces that envelop the stretched primitives along

the trajectories. We refer to hyperstreamlines as "major", "medium" or "mi-

nor" depending on the corresponding longitudinal eigenvector field that de-

fines their trajectories and color hyperstreamlines by means of a user-defined

function of the three eigenvalues, usually the amplitude of the longitudinal

eigenvalue. 1

Locating Degenerate Points

A three-dimensional symmetric tensor field (Equation (1)) has 6 independent

variables, three of which are on its diagonal. As a result, various types

of degenerate points may exist. These types correspond to the following

conditions:

A_(eo) = A:(eo) > _ (eo)
_ (eo) > a_(eo) = _ (eo)
_ (eo) = a: (eo)= _ (eo)

(2)
(3)
(4)

The characteristic equation of a 3-D symmetric tensor can be expressed in

the following form

a()_) = __3 + a._2 + b_ + c (5)
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where a, b and c are expressed in terms of the 6 independent tensor compo-

nents.

By applying the conditions for double and triple degeneracy, Equations

(2, 3, and 4), we obtain the corresponding conditions respectively:

2a 3 -_-9ab + 2d 3/_

B1 (x,y,z) = 27 + c = 0 (6)

2a 3 + 9ab - 2d 3/2

B2(x,y,z)= 27 +c=O (7)

B3(x,y,z) =a 2 + 3b=O (8)

From the expressions for B1, B2 and B3, we can also get that: B1 (x, y, z) =

0 is a maximum for B1, B2 (x, y, z) = 0 is a minimum for B2 and B3 (x, y, z) =

0 is a maximum for B3.

Now the problem is to find extrema in a 3D continuous field from the

discrete data sets. On a 3-D discrete mesh, the search for the various extrema

is conducted by processing one grid cell at a time for each spatial function.

This method can successfully find the points of triple degeneracy and is

especially useful when extended to locate points of double degeneracy where

the local tensor appears in the diagonal form only when transformed into its

eigenvector space.

Separating Surfaces

The classification of degenerate points in 2-D tensor fields 1 can be extended

to 3-D tensor fields. The building blocks are the fundamental elements as

defined for 2-D. 1 However, the separating surfaces in 3-D tensor fields have a

general structure as they could appear at various angles. Each of the surfaces

is characterized by patterns similar to those of hyperbolic or parabolic sectors

and is bounded by hyperstreamlines that are emanating from or terminated

at the degenerate point. Consequently, a point of triple degeneracy can be

classified by the number and type of separating surfaces surrounding it.

In Figures 1 we show the eigenvector patterns in the vicinity of a point of

triple degeneracy with 4 bounding hyperstreamlines. These hyperstreamlines

form 6 hyperbolic separating surfaces. Figures 2 shows a point of triple
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Figure 1: A point of triple degeneracy with 6 hyperbolic separating surfaces.
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Figure 2: A point of triple degeneracy with 2 hyperbolic separating surfaces

and one parabolic surface.
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degeneracy with only 3 bounding hyperstreamlines which form 2 hyperbolic

separating surfaces and one parabolic surface.

The trajectories on the surfaces are locally 2-D, while off the surfaces

they are fully 3-D and are determined by their closest surface.

Topology of 3-D Tensor Fields

We choose the elastic stress tensor induced by two compressive forces on

the top of a semi-infinite plane to illustrate the advantages of using topolog-

ical skeletons in visualizing 3-D tensor fields. In principle, hyperstreamline

trajectories of the stress tensor show the transmission of forces inside the

material. Figure 3 shows two hyperstreamlines corresponding to the most

compressive eigen direction, the minor eigenvector g3. The two forces, indi-

cated by the arrows, act on the surface at P1 = (0.5,0.0,-1.05) and P2 =

(-0.5, 0.0,-1.05) in the +z direction (downward). The domain of interest

(described by the bounding frame) extends between (-1.0,-1.0,-1.114367)

and (1.0, 1.0, 0.0) so it includes the key features of the stress tensor field, i.e.,

the degenerate points. It is assumed that the region where z < -1.05 is in

tension and that no stresses are transferred across the plane z = -1.05. The

color of the hyperstreamlines encodes the magnitude of the most compressive

eigenvalue, ,k3, while their cross section encodes the magnitude and direction

of the transverse eigenvectors. The hyperstreamlines converge toward regions

of high stresses where the forces are applied. Note the sharp change in color

and cross-section size of the hyperstreamlines as they approach the acting

points of the forces.

Analysis reveals that the tensor field contains two points of triple degen-

eracy and that these points reside on the surface of the semi-infinite plane.

Moreover, the eigenvalues at these points ( the location of which is given

by: D1 = (0.0,0.5,-1.05), D2 = (0.0,-0.5,-1.05)) are equal to zero. This

means that these points are stress free, a fact that can be verified by an

examination of the stress equations. We have therefore acquired physical in-

sight into the stress tensor field just by an examination of a basic topological

feature, a point of triple degeneracy.

Figure 4 shows hyperstreamlines that are obtained by tracing the major

eigenvector field. The location and direction of the forces are indicated by

the arrows and the location of the points of triple degeneracy are marked by

5



Figure 3: Stresstensor induced by two compressiveforces; niinor hyper-
streeanlines



Figure 4: Stress tensor induced by two compressiveforces; major hyper-
streamlines
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Figure 5: Stress tensor induced by two compressive forces; minor hyI)er-

streamlines

spheres. Tile hyperstreamlines are presented with a constant cross section

to avoid visual clutter resulting from the high eigenvalues in tile vicinity of

the points of the acting forces. They are, however, still color encoded by the

major eigenvalue. Each of the 2 degenerate points has 4 bounding hyper-

streamlines(separatrices), three of which lie on the surface z = -1.05 in a.

trisector pattern a.nd the forth, which is pointing in the +z direction, con-

nects the points of triple degeneracy, and delineates one of the two symmetry

planes (the other goes through the points of action of the forces).

To further clarify the tensor topology, the skeletons of the minor and

medium hyl)erstreamlines are presented in Figures 5 and 6 respectively. We



Figure 6: Stress tensor induced by," two compressive forces; medium hyper-
streamlines



canseefrom Figure 5that the minor hyperstreamlinesform a trisector-point
like pattern in the vicinity of the points of triple degeneracy. They also
indicate that a locus of points of double degeneracy(A2= Aa)connectsthe
points of triple degeneracy.This is evident from the two trisector points that
lie in the symmetry planesjust below the points of triple degeneracy.The
existenceof the line of double degeneracyis further verified by noting the
two points of double degeneracyin the medium hyperstreamlinesskeleton
(Figure 6).

Summary

In this report we describe the novel methods we developed and apply

them to determine the topology of tensor data sets. We made use of ad-

vanced representations to determine the significance of degenerate points

and topological skeletons in terms of physical features.

By extracting the geometric structure of tensor data, we produce sim-

ple and austere depictions that allow observers to infer the behavior of any

hyperstreamlines in the field. It enables important elements of 3D stress

distribution to be envisaged without visual clutter.

Degenerate points represent the singularities of the tensor field. In the

3-D elastic stress tensor case we were able to identify points of zero stresses

and to illustrate transmission of forces inside the material.

Note: a paper based on this report has been accepted for presentation in

IEEE Visualization '96.

On Going Work

The results presented above indicate the existence of continuous lines of

double degeneracy. The method we are using to locate degenerate points is

suitable only in the case of isolated points. We are currently developing tech-

niques to locate lines of double degeneracy to assist as in studying continuous

topological features, i.e. lines and surfaces of double degeneracy.
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Future Work

The classification of the various types of points of triple degeneracy re-

quires a continuous presentation of the separating surfaces. Currently, these

surfaces are described only by their bounding hyperstreamlines. A more com-

plete representation is one that is based on the use of textures. 1'2 The idea is

to define the general separating surfaces and then use texture to illustrate the

topology of the eigenvector field in the vicinity of points of triple degeneracy.
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