2 research outputs found

    UAV-Aided Interference Assessment for Private 5G NR Deployments: Challenges and Solutions

    Get PDF
    Industrial automation has created a high demand for private 5G networks, the deployment of which calls for an efficient and reliable solution to ensure strict compliance with the regulatory emission limits. While traditional methods for measuring outdoor interference include collecting real-world data by walking or driving, the use of unmanned aerial vehicles (UAVs) offers an attractive alternative due to their flexible mobility and adaptive altitude. As UAVs perform measurements quickly and semiautomatically, they can potentially assist in near realtime adjustments of the network configuration and fine-tuning its parameters, such as antenna settings and transmit power, as well as help improve indoor connectivity while respecting outdoor emission constraints. This article offers a firsthand tutorial on using aerial 5G emission assessment for interference management in nonpublic networks (NPNs) by reviewing the key challenges of UAV-mounted radio-scanner measurements. Particularly, we (i) outline the challenges of practical assessment of the outdoor interference originating from a local indoor 5G network while discussing regulatory and other related constraints and (ii) address practical methods and tools while summarizing the recent results of our measurement campaign. The reported proof of concept confirms that UAV-based systems represent a promising tool for capturing outdoor interference from private 5G systems.Comment: 7 pages, 4 figure

    The use of unmanned aircraft system for the radio frequency interference measurements

    No full text
    Abstract The unmanned aircraft systems (UAS) are commonly used for aerial photography, express delivery for packets or video monitoring. The UAS technology can help responding to the growing demands of the frequency monitoring by national radiocommunication authorities (NRAs). This article presents a practical usage trial of an unmanned aircraft for monitoring the spectrum usage and finding the interference location. The monitoring of spectrum usage is one part of the NRAs’ process for guarantee user compliance with radio license conditions. Finding illegal or malfunctioning transmitters is a challenging task especially in urban environment, due to multi-path propagation conditions. This study focuses on practical assessment of the method for determining accurate location of radio frequency interference sources from the buildings using the UAS technology. The practicability of the UAS technology usage in spectrum monitoring activities was under the evaluation. This study showed promising results that UAS with the measurement equipment setup suits NRAs’ as a tool for mobile monitoring on the air
    corecore