5 research outputs found

    Performance Analysis of Ultra Wideband Multiple Access Time Hopping – Pulse Shape Modulation in Presence of Timing Jitter

    Get PDF
    In short-range networks such as wireless personal area networks (WPAN), multiple user wireless connectivity for surveillance would require a wireless technology that supports multiple streams of high-speed data and consumes very little power. Ultra wideband (UWB) technology enables wireless connectivity across multiple devices (users) addressing the need for high-speed WPAN. Apart from having a distinct advantage of higher data rate over Bluetooth v4.0 (24 Mbps), the UWB technology is also found to be tolerant to frequency-selective multipath fading. In this paper authors discuss a time-hopping pulse shape modulation UWB signalling scheme for ad-hoc high bit rate wireless connectivity for defence applications. Authors analyse multiple access interference for both Gaussian channel and frequency selective multipath fading channel to compare the effects of timing jitter on two types of pulse shapes, namely modified Hermite pulse (MHP) and prolate spheroidal wave functions (PSWF). Authors make a comparative analysis of the system performance with respect to PSWF and MHP to ascertain robustness to timing jitter. In the process, authors introduced a new metric of decision factor in timing jitter analysis.Defence Science Journal, Vol. 64, No. 5, September 2014, pp.464-470, DOI:http://dx.doi.org/10.14429/dsj.64.578

    Hard-input-hard-output capacity analysis of UWB BPSK systems with timing errors

    Get PDF
    The hard-input-hard-output capacity of a binary phase-shift keying (BPSK) ultrawideband system is analyzed for both additive white Gaussian noise and multipath fading channels with timing errors. Unlike previous works that calculate the capacity with perfect synchronization and/or multiple-access interference only, our analysis considers timing errors with different distributions, as well as the interpath (IPI), interchip (ICI), and intersymbol (ISI) interferences, as in practical systems. The sensitivity of the channel capacity to the timing error is examined. The effects of pulse shape, the multiple-access technique, the number of users, and the number of chips are studied. It is found that time hopping is less sensitive to the pulse shape and that the timing error has higher capacity than direct sequence due to its low duty of cycle. Using these results, one can choose appropriate system parameters for different applications
    corecore