4,108 research outputs found

    The Dutch interbank computer network

    Get PDF
    At the end of 1980, a strategic decision was made by the Dutch banks and savings banks to commence the development of a Data Communications Infrastructure (DCI), to be used for a number of forthcoming interbank applications. It was agreed that this new data communications infrastructure should be based on the emerging Reference Model for Open Systems Interconnection (OSI). The first interbank application using the DCI (i.e. urgent money transfers) was introduced in the second quarter of 1985. Other interbank applications, which will also make use of the functions provided by the DCI, are currently being developed.\ud \ud This paper provides the background to the DCI project, discusses the selection of OSI standards for the network, and gives an overview of the design of the software package, which was developed to support the selected OSI standards

    Networking DEC and IBM computers

    Get PDF
    Local Area Networking of DEC and IBM computers within the structure of the ISO-OSI Seven Layer Reference Model at a raw signaling speed of 1 Mops or greater are discussed. After an introduction to the ISO-OSI Reference Model nd the IEEE-802 Draft Standard for Local Area Networks (LANs), there follows a detailed discussion and comparison of the products available from a variety of manufactures to perform this networking task. A summary of these products is presented in a table

    Impact in networks and ecosystems: building case studies that make a difference

    Get PDF
    open accessThis toolkit aims to support the building up of case studies that show the impact of project activities aiming to promote innovation and entrepreneurship. The case studies respond to the challenge of understanding what kinds of interventions work in the Southern African region, where, and why. The toolkit has a specific focus on entrepreneurial ecosystems and proposes a method of mapping out the actors and their relationships over time. The aim is to understand the changes that take place in the ecosystems. These changes are seen to be indicators of impact as increased connectivity and activity in ecosystems are key enablers of innovation. Innovations usually happen together with matching social and institutional adjustments, facilitating the translation of inventions into new or improved products and services. Similarly, the processes supporting entrepreneurship are guided by policies implemented in the common framework provided by innovation systems. Overall, policies related to systems of innovation are by nature networking policies applied throughout the socioeconomic framework of society to pool scarce resources and make various sectors work in coordination with each other. Most participating SAIS countries already have some kinds of identifiable systems of innovation in place both on national and regional levels, but the lack of appropriate institutions, policies, financial instruments, human resources, and support systems, together with underdeveloped markets, create inefficiencies and gaps in systemic cooperation and collaboration. In other words, we do not always know what works and what does not. On another level, engaging users and intermediaries at the local level and driving the development of local innovation ecosystems within which local culture, especially in urban settings, has evident impact on how collaboration and competition is both seen and done. In this complex environment, organisations supporting entrepreneurship and innovation often find it difficult to create or apply relevant knowledge and appropriate networking tools, approaches, and methods needed to put their processes to work for broader developmental goals. To further enable these organisations’ work, it is necessary to understand what works and why in a given environment. Enhanced local and regional cooperation promoted by SAIS Innovation Fund projects can generate new data on this little-explored area in Southern Africa. Data-driven knowledge on entrepreneurship and innovation support best practices as well as effective and efficient management of entrepreneurial ecosystems can support replication and inform policymaking, leading thus to a wider impact than just that of the immediate reported projects and initiatives

    Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    Get PDF
    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented

    A comparison of integration architectures

    Get PDF
    This paper presents GenSIF, a Generic Systems Integration Framework. GenSIF features a pre-planned development process on a domain-wide basis and facilitates system integration and project coordination for very large, complex and distributed systems. Domain analysis, integration architecture design and infrastructure design are identified as the three main components of GenSIF. In the next step we map Beilcore\u27s OSCA interoperability architecture, ANSA, IBM\u27s SAA and Bull\u27s DCM into GenSIF. Using the GenSIF concepts we compare each of these architectures. GenSIF serves as a general framework to evaluate and position specific architecture. The OSCA architecture is used to discuss the impact of vendor architectures on application development. All opinions expressed in this paper, especially with regard to the OSCA architecture, are the opinions of the author and do not necessarily reflect the point of view of any of the mentioned companies

    Data center resilience assessment : storage, networking and security.

    Get PDF
    Data centers (DC) are the core of the national cyber infrastructure. With the incredible growth of critical data volumes in financial institutions, government organizations, and global companies, data centers are becoming larger and more distributed posing more challenges for operational continuity in the presence of experienced cyber attackers and occasional natural disasters. The main objective of this research work is to present a new methodology for data center resilience assessment, this methodology consists of: • Define Data center resilience requirements. • Devise a high level metric for data center resilience. • Design and develop a tool to validate and the metric. Since computer networks are an important component in the data center architecture, this research work was extended to investigate computer network resilience enhancement opportunities within the area of routing protocols, redundancy, and server load to minimize the network down time and increase the time period of resisting attacks. Data center resilience assessment is a complex process as it involves several aspects such as: policies for emergencies, recovery plans, variation in data center operational roles, hosted/processed data types and data center architectures. However, in this dissertation, storage, networking and security are emphasized. The need for resilience assessment emerged due to the gap in existing reliability, availability, and serviceability (RAS) measures. Resilience as an evaluation metric leads to better proactive perspective in system design and management. The proposed Data center resilience assessment portal (DC-RAP) is designed to easily integrate various operational scenarios. DC-RAP features a user friendly interface to assess the resilience in terms of performance analysis and speed recovery by collecting the following information: time to detect attacks, time to resist, time to fail and recovery time. Several set of experiments were performed, results obtained from investigating the impact of routing protocols, server load balancing algorithms on network resilience, showed that using particular routing protocol or server load balancing algorithm can enhance network resilience level in terms of minimizing the downtime and ensure speed recovery. Also experimental results for investigating the use social network analysis (SNA) for identifying important router in computer network showed that the SNA was successful in identifying important routers. This important router list can be used to redundant those routers to ensure high level of resilience. Finally, experimental results for testing and validating the data center resilience assessment methodology using the DC-RAP showed the ability of the methodology quantify data center resilience in terms of providing steady performance, minimal recovery time and maximum resistance-attacks time. The main contributions of this work can be summarized as follows: • A methodology for evaluation data center resilience has been developed. • Implemented a Data Center Resilience Assessment Portal (D$-RAP) for resilience evaluations. • Investigated the usage of Social Network Analysis to Improve the computer network resilience

    An experiment in remote manufacturing using the advanced communications technology satellite

    Get PDF
    The goal of the completed project was to develop an experiment in remote manufacturing that would use the capabilities of the ACTS satellite. A set of possible experiments that could be performed using the Advanced Communications Technology Satellite (ACTS), and which would perform remote manufacturing using a laser cutter and an integrated circuit testing machine are described in detail. The proposed design is shown to be a feasible solution to the offered problem and it takes into consideration the constraints that were placed on the experiment. In addition, we have developed two more experiments that are included in this report: backup of rural telecommunication networks, and remote use of Synthetic Aperture Radar (SAR) data analysis for on-site collection of glacier scattering data in the Antarctic

    The Proceedings of 14th Australian Information Security Management Conference, 5-6 December 2016, Edith Cowan University, Perth, Australia

    Get PDF
    The annual Security Congress, run by the Security Research Institute at Edith Cowan University, includes the Australian Information Security and Management Conference. Now in its fourteenth year, the conference remains popular for its diverse content and mixture of technical research and discussion papers. The area of information security and management continues to be varied, as is reflected by the wide variety of subject matter covered by the papers this year. The conference has drawn interest and papers from within Australia and internationally. All submitted papers were subject to a double blind peer review process. Fifteen papers were submitted from Australia and overseas, of which ten were accepted for final presentation and publication. We wish to thank the reviewers for kindly volunteering their time and expertise in support of this event. We would also like to thank the conference committee who have organised yet another successful congress. Events such as this are impossible without the tireless efforts of such people in reviewing and editing the conference papers, and assisting with the planning, organisation and execution of the conferences. To our sponsors also a vote of thanks for both the financial and moral support provided to the conference. Finally, thank you to the administrative and technical staff, and students of the ECU Security Research Institute for their contributions to the running of the conference
    • …
    corecore