242 research outputs found

    Approximate Inference for Determinantal Point Processes

    Get PDF
    In this thesis we explore a probabilistic model that is well-suited to a variety of subset selection tasks: the determinantal point process (DPP). DPPs were originally developed in the physics community to describe the repulsive interactions of fermions. More recently, they have been applied to machine learning problems such as search diversification and document summarization, which can be cast as subset selection tasks. A challenge, however, is scaling such DPP-based methods to the size of the datasets of interest to this community, and developing approximations for DPP inference tasks whose exact computation is prohibitively expensive. A DPP defines a probability distribution over all subsets of a ground set of items. Consider the inference tasks common to probabilistic models, which include normalizing, marginalizing, conditioning, sampling, estimating the mode, and maximizing likelihood. For DPPs, exactly computing the quantities necessary for the first four of these tasks requires time cubic in the number of items or features of the items. In this thesis, we propose a means of making these four tasks tractable even in the realm where the number of items and the number of features is large. Specifically, we analyze the impact of randomly projecting the features down to a lower-dimensional space and show that the variational distance between the resulting DPP and the original is bounded. In addition to expanding the circumstances in which these first four tasks are tractable, we also tackle the other two tasks, the first of which is known to be NP-hard (with no PTAS) and the second of which is conjectured to be NP-hard. For mode estimation, we build on submodular maximization techniques to develop an algorithm with a multiplicative approximation guarantee. For likelihood maximization, we exploit the generative process associated with DPP sampling to derive an expectation-maximization (EM) algorithm. We experimentally verify the practicality of all the techniques that we develop, testing them on applications such as news and research summarization, political candidate comparison, and product recommendation

    COMMUNITY DETECTION IN GRAPHS

    Get PDF
    Thesis (Ph.D.) - Indiana University, Luddy School of Informatics, Computing, and Engineering/University Graduate School, 2020Community detection has always been one of the fundamental research topics in graph mining. As a type of unsupervised or semi-supervised approach, community detection aims to explore node high-order closeness by leveraging graph topological structure. By grouping similar nodes or edges into the same community while separating dissimilar ones apart into different communities, graph structure can be revealed in a coarser resolution. It can be beneficial for numerous applications such as user shopping recommendation and advertisement in e-commerce, protein-protein interaction prediction in the bioinformatics, and literature recommendation or scholar collaboration in citation analysis. However, identifying communities is an ill-defined problem. Due to the No Free Lunch theorem [1], there is neither gold standard to represent perfect community partition nor universal methods that are able to detect satisfied communities for all tasks under various types of graphs. To have a global view of this research topic, I summarize state-of-art community detection methods by categorizing them based on graph types, research tasks and methodology frameworks. As academic exploration on community detection grows rapidly in recent years, I hereby particularly focus on the state-of-art works published in the latest decade, which may leave out some classic models published decades ago. Meanwhile, three subtle community detection tasks are proposed and assessed in this dissertation as well. First, apart from general models which consider only graph structures, personalized community detection considers user need as auxiliary information to guide community detection. In the end, there will be fine-grained communities for nodes better matching user needs while coarser-resolution communities for the rest of less relevant nodes. Second, graphs always suffer from the sparse connectivity issue. Leveraging conventional models directly on such graphs may hugely distort the quality of generate communities. To tackle such a problem, cross-graph techniques are involved to propagate external graph information as a support for target graph community detection. Third, graph community structure supports a natural language processing (NLP) task to depict node intrinsic characteristics by generating node summarizations via a text generative model. The contribution of this dissertation is threefold. First, a decent amount of researches are reviewed and summarized under a well-defined taxonomy. Existing works about methods, evaluation and applications are all addressed in the literature review. Second, three novel community detection tasks are demonstrated and associated models are proposed and evaluated by comparing with state-of-art baselines under various datasets. Third, the limitations of current works are pointed out and future research tracks with potentials are discussed as well

    Learning, Large Scale Inference, and Temporal Modeling of Determinantal Point Processes

    Get PDF
    Determinantal Point Processes (DPPs) are random point processes well-suited for modelling repulsion. In discrete settings, DPPs are a natural model for subset selection problems where diversity is desired. For example, they can be used to select relevant but diverse sets of text or image search results. Among many remarkable properties, they offer tractable algorithms for exact inference, including computing marginals, computing certain conditional probabilities, and sampling. In this thesis, we provide four main contributions that enable DPPs to be used in more general settings. First, we develop algorithms to sample from approximate discrete DPPs in settings where we need to select a diverse subset from a large amount of items. Second, we extend this idea to continuous spaces where we develop approximate algorithms to sample from continuous DPPs, yielding a method to select point configurations that tend to be overly-dispersed. Our third contribution is in developing robust algorithms to learn the parameters of the DPP kernels, which is previously thought to be a difficult, open problem. Finally, we develop a temporal extension for discrete DPPs, where we model sequences of subsets that are not only marginally diverse but also diverse across time

    Unsupervised Graph-Based Similarity Learning Using Heterogeneous Features.

    Full text link
    Relational data refers to data that contains explicit relations among objects. Nowadays, relational data are universal and have a broad appeal in many different application domains. The problem of estimating similarity between objects is a core requirement for many standard Machine Learning (ML), Natural Language Processing (NLP) and Information Retrieval (IR) problems such as clustering, classiffication, word sense disambiguation, etc. Traditional machine learning approaches represent the data using simple, concise representations such as feature vectors. While this works very well for homogeneous data, i.e, data with a single feature type such as text, it does not exploit the availability of dfferent feature types fully. For example, scientic publications have text, citations, authorship information, venue information. Each of the features can be used for estimating similarity. Representing such objects has been a key issue in efficient mining (Getoor and Taskar, 2007). In this thesis, we propose natural representations for relational data using multiple, connected layers of graphs; one for each feature type. Also, we propose novel algorithms for estimating similarity using multiple heterogeneous features. Also, we present novel algorithms for tasks like topic detection and music recommendation using the estimated similarity measure. We demonstrate superior performance of the proposed algorithms (root mean squared error of 24.81 on the Yahoo! KDD Music recommendation data set and classiffication accuracy of 88% on the ACL Anthology Network data set) over many of the state of the art algorithms, such as Latent Semantic Analysis (LSA), Multiple Kernel Learning (MKL) and spectral clustering and baselines on large, standard data sets.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/89824/1/mpradeep_1.pd

    Mining Text and Time Series Data with Applications in Finance

    Get PDF
    Finance is a field extremely rich in data, and has great need of methods for summarizing and understanding these data. Existing methods of multivariate analysis allow the discovery of structure in time series data but can be difficult to interpret. Often there exists a wealth of text data directly related to the time series. In this thesis it is shown that this text can be exploited to aid interpretation of, and even to improve, the structure uncovered. To this end, two approaches are described and tested. Both serve to uncover structure in the relationship between text and time series data, but do so in very different ways. The first model comes from the field of topic modelling. A novel topic model is developed, closely related to an existing topic model for mixed data. Improved held-out likelihood is demonstrated for this model on a corpus of UK equity market data and the discovered structure is qualitatively examined. To the authors’ knowledge this is the first attempt to combine text and time series data in a single generative topic model. The second method is a simpler, discriminative method based on a low-rank decomposition of time series data with constraints determined by word frequencies in the text data. This is compared to topic modelling using both the equity data and a second corpus comprising foreign exchange rates time series and text describing global macroeconomic sentiments, showing further improvements in held-out likelihood. One example of an application for the inferred structure is also demonstrated: construction of carry trade portfolios. The superior results using this second method serve as a reminder that methodological complexity does not guarantee performance gains

    Data Analysis for Emotion Identification in Text

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    The Manifold of Neural Responses Informs Physiological Circuits in the Visual System

    Get PDF
    The rapid development of multi-electrode and imaging techniques is leading to a data explosion in neuroscience, opening the possibility of truly understanding the organization and functionality of our visual systems. Furthermore, the need for more natural visual stimuli greatly increases the complexity of the data. Together, these create a challenge for machine learning. Our goal in this thesis is to develop one such technique. The central pillar of our contribution is designing a manifold of neurons, and providing an algorithmic approach to inferring it. This manifold is functional, in the sense that nearby neurons on the manifold respond similarly (in time) to similar aspects of the stimulus ensemble. By organizing the neurons, our manifold differs from other, standard manifolds as they are used in visual neuroscience which instead organize the stimuli. Our contributions to the machine learning component of the thesis are twofold. First, we develop a tensor representation of the data, adopting a multilinear view of potential circuitry. Tensor factorization then provides an intermediate representation between the neural data and the manifold. We found that the rank of the neural factor matrix can be used to select an appropriate number of tensor factors. Second, to apply manifold learning techniques, a similarity kernel on the data must be defined. Like many others, we employ a Gaussian kernel, but refine it based on a proposed graph sparsification technique—this makes the resulting manifolds less sensitive to the choice of bandwidth parameter. We apply this method to neuroscience data recorded from retina and primary visual cortex in the mouse. For the algorithm to work, however, the underlying circuitry must be exercised to as full an extent as possible. To this end, we develop an ensemble of flow stimuli, which simulate what the mouse would \u27see\u27 running through a field. Applying the algorithm to the retina reveals that neurons form clusters corresponding to known retinal ganglion cell types. In the cortex, a continuous manifold is found, indicating that, from a functional circuit point of view, there may be a continuum of cortical function types. Interestingly, both manifolds share similar global coordinates, which hint at what the key ingredients to vision might be. Lastly, we turn to perhaps the most widely used model for the cortex: deep convolutional networks. Their feedforward architecture leads to manifolds that are even more clustered than the retina, and not at all like that of the cortex. This suggests, perhaps, that they may not suffice as general models for Artificial Intelligence

    Learning with Attributed Networks: Algorithms and Applications

    Get PDF
    abstract: Attributes - that delineating the properties of data, and connections - that describing the dependencies of data, are two essential components to characterize most real-world phenomena. The synergy between these two principal elements renders a unique data representation - the attributed networks. In many cases, people are inundated with vast amounts of data that can be structured into attributed networks, and their use has been attractive to researchers and practitioners in different disciplines. For example, in social media, users interact with each other and also post personalized content; in scientific collaboration, researchers cooperate and are distinct from peers by their unique research interests; in complex diseases studies, rich gene expression complements to the gene-regulatory networks. Clearly, attributed networks are ubiquitous and form a critical component of modern information infrastructure. To gain deep insights from such networks, it requires a fundamental understanding of their unique characteristics and be aware of the related computational challenges. My dissertation research aims to develop a suite of novel learning algorithms to understand, characterize, and gain actionable insights from attributed networks, to benefit high-impact real-world applications. In the first part of this dissertation, I mainly focus on developing learning algorithms for attributed networks in a static environment at two different levels: (i) attribute level - by designing feature selection algorithms to find high-quality features that are tightly correlated with the network topology; and (ii) node level - by presenting network embedding algorithms to learn discriminative node embeddings by preserving node proximity w.r.t. network topology structure and node attribute similarity. As changes are essential components of attributed networks and the results of learning algorithms will become stale over time, in the second part of this dissertation, I propose a family of online algorithms for attributed networks in a dynamic environment to continuously update the learning results on the fly. In fact, developing application-aware learning algorithms is more desired with a clear understanding of the application domains and their unique intents. As such, in the third part of this dissertation, I am also committed to advancing real-world applications on attributed networks by incorporating the objectives of external tasks into the learning process.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    corecore