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Abstract

The Manifold of Neural Responses Informs Physiological Circuits in the Visual System

Luciano Dyballa
2021

The rapid development of multi-electrode and imaging techniques is leading to a data
explosion in neuroscience, opening the possibility of truly understanding the organization
and functionality of our visual systems. Furthermore, the need for more natural visual
stimuli greatly increases the complexity of the data. Together, these create a challenge for
machine learning. Our goal in this thesis is to develop one such technique. The central
pillar of our contribution is designing a manifold of neurons, and providing an algorithmic
approach to inferring it. This manifold is functional, in the sense that nearby neurons on
the manifold respond similarly (in time) to similar aspects of the stimulus ensemble. By
organizing the neurons, our manifold differs from other, standard manifolds as they are
used in visual neuroscience which instead organize the stimuli.

Our contributions to the machine learning component of the thesis are twofold. First,
we develop a tensor representation of the data, adopting a multilinear view of potential
circuitry. Tensor factorization then provides an intermediate representation between the
neural data and the manifold. We found that the rank of the neural factor matrix can be
used to select an appropriate number of tensor factors. Second, to apply manifold learning
techniques, a similarity kernel on the data must be defined. Like many others, we employ
a Gaussian kernel, but refine it based on a proposed graph sparsification technique—this
makes the resulting manifolds less sensitive to the choice of bandwidth parameter.

We apply this method to neuroscience data recorded from retina and primary visual
cortex in the mouse. For the algorithm to work, however, the underlying circuitry must
be exercised to as full an extent as possible. To this end, we develop an ensemble of flow
stimuli, which simulate what the mouse would ‘see’ running through a field. Applying the
algorithm to the retina reveals that neurons form clusters corresponding to known retinal
ganglion cell types. In the cortex, a continuous manifold is found, indicating that, from
a functional circuit point of view, there may be a continuum of cortical function types.
Interestingly, both manifolds share similar global coordinates, which hint at what the key
ingredients to vision might be.

Lastly, we turn to perhaps the most widely used model for the cortex: deep convo-
lutional networks. Their feedforward architecture leads to manifolds that are even more
clustered than the retina, and not at all like that of the cortex. This suggests, perhaps, that
they may not suffice as general models for Artificial Intelligence.
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Chapter 1

Introduction

1.1 Black box experiments
The Problem of the Black Box is well-known and has its origins in electrical engineering[8].
One is given a sealed box with terminals for input and output, to which one can feed any
desired input and record their corresponding outputs. The challenge is then make deduc-
tions about what is in the device, i.e., its inner workings. Of course, the problem is not
restricted to literal machines; it can be applied to any system that allows for experimenta-
tion but is not fully observable, of which examples can be found everywhere (to a child,
almost anything is a black box!). Aside from the ultimate goal of understanding their
mechanisms and functioning principles, such systems motivate additional questions, in
particular:

• Which stimuli are most appropriate for obtaining an informative output?

• Which methods are most useful or efficient for analyzing it?

• What properties of the box are feasibly discoverable and which are not?

Figure 1.1: Schematic of the black box problem. Which input stimuli are relevant? How
to understand its inner workings from its outputs?
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The answers to these questions will depend on the nature of the black box, i.e. what
its specific inputs and outputs are, as well as on whether prior knowledge is available
regarding what is inside the box. In what follows, we will apply our black box analogy to
the specific problem of inferring neural circuitry and propose answers the questions above.

1.1.1 The brain as a black box

The brain is a classical example of a black box, with the use of such metaphor for it
referring back to the early developments in cybernetics and behaviorism. Given its mes-
merizing complexity, it is not surprising that this problem has not been solved for even the
simplest of organisms. How can we begin to make sense of it? What does that even mean?

Brains can be studied in different ways. An animal might respond to a stimulus and
have its actions annotated by an experimenter. Or, the output of neurons might be recorded
directly by the use of electrodes, in which case there might be multiple outputs to record
from, simultaneously. The latter is the type we shall focus on. It treats the black box as be-
ing the circuits that govern how different neurons interact with each other when responding
to a given stimulus (Fig. 1.2.

Figure 1.2: The black box problem as applied to networks of neurons. Which stimuli
are most relevant? How to infer circuit properties based on the output of a sampling of
neurons?

A considerable effort is currently dedicated to the mapping of the anatomic connections
in brains, i.e. their microscale connectome [151]. This has been accomplished for a simple
organism like the nematode [140, 34]. Although data like these can provide insight into,
e.g., wiring principles [33] and hierarchical organization [34], knowledge of anatomical
connectivity alone is incomplete without information about the neurons’ functional roles.
This motivates an accompanying effort to map functional connectivity at the cellular level
(e.g., [123]). In particular, one would like to know which neurons interact with each
other in response to different sensory stimuli; this means understanding how circuits are
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organized, and how they encode sensory information and convert this into actions. Only
then can we a chance of “opening” the “black box”.

Therefore, given the increasing size of data sets being generated, the development of
algorithms suitable to process this type of information becomes crucial. Far from being a
solved problem in machine learning, providing an intelligible mapping of how the multiple
parts in a general system interact with each other poses a significant challenge, given that
it is inherently unsupervised and requires that many sources of information (e.g. multiple
neuronal recordings, multiple stimuli) be combined into a coherent high-dimensional data
structure.

The extent to which the network can be recovered will of course depend on the com-
plexity of its components and connections. The problem is greatly simplified when these
are restricted to linear operations (possibly followed by static nonlinearities). A classic
result shows that this type of system, known as the Wiener cascade or linear-nonlinear
(LN) model can be identified by its response to white Gaussian noise [144, 24]. This has
recently been shown for deep ReLU networks as well [115]. The problem has not been
solved for general nonlinear networks.

In this thesis, we present a combination of machine learning techniques designed for
revealing organization principles in a general nonlinear neural network. Our specific goal
is to infer circuit properties in the mouse visual system by using real-world neuronal spike
recordings (with no information about anatomical connectivity) from primary visual cortex
(V1) and the retina. The currently available methods and motivation for our own approach
are discussed next.

1.2 Organizing neurons in terms of their responses
Inferring circuit structure and dynamics at the cellular level in the visual system is con-
fronted with two major challenges. The first one is the diversity of stimuli needed to ex-
ercise the circuits at a natural activity level (i.e. appropriate inputs to the black box). The
use of white noise and drifting gratings is widespread but is too impoverished a stimulus
set compared to the diversity of sensory inputs experienced by the animal. Many studies
demonstrate that conventional artificial stimuli fail to engage mechanisms that profoundly
affect responses of neurons throughout the visual system [72, 92, 60]. At the other ex-
treme, unconstrained natural images defy analysis.

Which stimuli are most appropriate for obtaining an informative output? We pro-
pose the use of flows as a complementary stimulus class—they mimic movement through
natural environments and allow for richer geometry, motion, and contrast variations while
preserving traditional parameters such as spatial and temporal frequencies, orientation, and
directionality. Flows are significant to perceptual organization [15] and have implications
to connectivity patterns in visual cortex [14]. Although far from the level of complexity of
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natural scenes, we show that flow stimuli are able engage strong responses for a significant
fraction of cells in the visual cortex, in particular at high spatial frequencies that would not
be predicted based on the use of gratings and linear models.

Once a richer stimulus ensemble is proposed, a more complex set of responses is
recorded. Data dimensionality increases fast, and the challenge becomes finding an ad-
equate analysis that takes advantage of the detailed information collected.

Which methods are most useful or efficient for analyzing it? A common approach
used to analyze responses of a population of neurons to a stimulus ensemble is to embed
stimulus trials in neural coordinates [146, 36]. This is typically done by having each data
point be a vector containing the firing rates of all neurons during an individual trial (see
example in Fig. 1.3). This embedding is well suited for reading out which stimulus was
used on a given trial [39]; that will depend on whether the neural population (as a whole)
can tell the stimuli apart (case in which the trials from different stimuli form clusters).

Figure 1.3: Comparison between standard approach in the neuroscience literature vs. ours.
Left: the standard approach of dimensionality reduction, in which individual trials are
plotted in ‘neural’ coordinates. For cortical data, this reveals clouds of trials, with each
(differently colored) cluster corresponding to drifting gratings (low vs. high spatial fre-
quency) or flows (positive or negative contrast). Right: our proposed approach, in which
neurons are plotted in ‘stimulus-response’ coordinates. Here, different colors represent
different neighborhoods sharing similar stimulus preference and response patterns, from
which can be inferred that they participate in similar biological circuits.

This approach is also particularly useful for identifying transitory brain ‘states’ (for
example, if in some trials the population activity is particularly depressed, for example,
as compared to other trials). However, there are two main drawbacks: first, information
about the temporal dynamics of the neurons’ responses might be lost due to the use of
trial-averaged firing rates; secondly; second, one cannot immediately gain insight on how
the different neurons relate to one another, i.e., the axes on this plot are difficult to in-
terpret since they denote correlated combinations of neurons (or factors such as principal
components) [104, 47]. Sometimes the interpretation is helped by an associated behav-
ioral task to align the trial data, as with repetitive reaching movements in the motor system
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[29, 117], maze position for the hippocampus [59], or attention [126]. However these be-
havioral (task-dependent) signals are generally lacking for early visual processing [35], so
we develop a different approach.

In order to understand what a circuit does, one must first identify its parts. We
would like to exploit the fact that sufficiently large, complex systems typically exhibit
localized properties [8], by utilizing a manifold embedding algorithm that aims to in-
fer global coordinates from information regarding local interactions between data points.
Our approach consists in building an embedding of neurons, i.e. the neural manifold,
in terms of their responses to the stimulus ensemble. Instead of representing trials (and
their dynamics) in neural coordinates, we turn the relationship around and seek to repre-
sent neurons in stimulus-response coordinates. (Note this is in contrast with ‘decoding
manifolds’ that have been previously proposed [28].) Our goal is to define a manifold
of neurons organized in terms of their response properties—its geometry should reflect
similarities in how each neuron responds to the input stimuli in comparison to the others.
Put differently, nearby neurons on the manifold should respond to similar properties of
the stimulus ensemble and with similar response dynamics. We call this abstract notion
of network a physiological network since it combines both functional and physiological
properties (Fig. 1.4). How exactly such inference might be done will be discussed next.

Figure 1.4: Our approach to the black box problem applied to neural circuits. Spike record-
ings (output) are analyzed and used to inform a manifold learning algorithm, which em-
beds neurons in stimulus-response coordinates. Identifying the main coordinates allows
one to infer properties of an abstract version of the original network that combines func-
tional and physiological properties. If cells are well-organized, then local neighborhoods
allow us to infer ‘functional’ circuit properties, or, in other words, we begin to “open the
black box”.

5



1.2.1 Relating manifolds to neural circuits

How can manifolds reveal circuit properties without being given explicit connectivity
information? Our method is based on the expectation that the duality that exists be-
tween networks and manifolds can allow us to infer useful information about the original
network; if the underlying neural circuits were known, the neural manifold could be cal-
culated exactly. Fig. 1.5 builds some intuition: if neurons were sampled from a collection
of isolated circuits (first row), then the functional manifold would be discontinuous (clus-
tered); each separate circuit would, in effect, define its own manifold. This is like the
‘parallel pathways’ case encountered to a large extent in the retina: retinal ganglion cell
(RGC) types do not communicate with one another and receive distinct sets of presynaptic
bipolar and amacrine cell input: they are distinct circuits. In the case of a simple (e.g.
highly symmetrical) connectivity pattern, typical of artificial networks (second row), we
expect a low-dimensional manifold. A third possibility, more like visual cortex, is shown
in the third row. Neurons are densely interconnected within sub-circuits (e.g., excitatory
cliques [152]), which in turn are less tightly coupled with one another. Such a ‘partially-
decomposable’ network will yield a continuous manifold; coordinates across the manifold
will elucidate the functional dependencies. A final possibility is a circuit in which all neu-
rons are completely interconnected (fourth row). Its manifold would become ‘degenerate’,
meaning that the network would not exhibit any functional organization/selectivity across
groups of neurons, since all responses depend on all neurons. Thus, neural manifolds and
circuit architecture are related.

Of course, we do not know the circuits a priori—circuits are what we aim eventually
to understand. Instead, our approach is to construct the manifolds from neural recordings
as an intermediate step toward inferring circuit structure. This is already useful at the
most basic, topological level. Indeed, our results for the retina suggest a discontinuous
encoding manifold while those for the cortex suggest a continuous manifold (Chapter 6).
Our approach is summarized in Fig. 1.6.

It is worth noting that this is in contrast with recent efforts to understand visual pro-
cessing using deep networks (e.g., [79, 97, 11, 149]). Our approach is data-driven (i.e.,
unsupervised), and benefits from the fact that our stimuli have configurable paramet-
ric/geometric properties, which can be smoothly varied by these parameters (unlike ar-
bitrary natural images). Our analysis approach provides a description of units (neurons)
directly in terms of functional properties and their relationships. This complements the
type of analysis based on deep networks.

Perhaps the closest two attempts to analyze neuroscience data are as follows. The
authors in [99] study data from imaging, rather than electrodes, but also use tensor fac-
torization and diffusion maps. Their goal is a hierarchical representation of the biological
data. Second, authors in [91] use manifold techniques to study hippocampal neurons. Most
approaches use the standard manifold in neural coordinates (e.g., [23, 49] and references
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Figure 1.5: Generic network architectures with increasing level of connectivity and their
corresponding manifolds. (See text for details.)

Figure 1.6: The neural manifold approach allows one to infer the general network archi-
tecture of the circuits being probed in terms of their responses to the stimulus ensemble.

therein).

1.2.2 Dimensionality reduction steps

Our approach to generate response manifolds is carried out in two main stages. First,
we identify groups of neurons that respond similarly over time to different aspects of the
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stimulus ensemble. Since these neural groupings still contain a considerable degree of
complexity, we reduce their dimensionality even further, obtaining novel coordinates for
embeddings that can be interpreted in either neural or stimulus terms. We now describe
these stages in more detail (they are schematized in Fig. 1.9).

Step 1: Tensor factorization

Each neuron’s average response to each stimuli over time is represented by an array of
spiking activity over time (a peristimulus time histogram, or PSTH). Since there is one
PSTH for each member of our stimulus ensemble for each neuron, this results in a data
tensor (3D array) that has axes (i.e. modes) of neuron × stimulus × PSTH (Fig. 1.8).
Such tensors are a generalization of data matrices and, analogously to how the latter can
be decomposed into their (principal) components, the former can be expanded as a sum of
rank-1 components (outer product of factors, one for each mode) [77].

Figure 1.7: Inputs and outputs in our “black box” experiment. A: A multi-electrode array
records neuronal activity from mouse visual cortex as visual stimuli are presented on a
screen. B: Top: spikes (in red) are averaged across multiple trials of the same stimulus to
produce an average firing rate over the time, or PSTH (in blue).

Each tensor component is an association of factors encoding different aspects of the
data. They show which neurons, in proportion, respond to which stimuli (height of bars)
and with which PSTH patterns. Different components show different combinations of
parts; for example, some could involve one group of neurons and be heavily responsive
to low frequency gratings; others could show different groups of neurons that respond to
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Figure 1.8: Summary of tensor CP decomposition and resulting components as applied
to our experiments. Using PSTHs containing spiking activity over the full time course
of a trial (as opposed to the average firing rate) naturally suggests the use of a tensor to
represent data for multiple stimuli. Each factor is comprised of a neural, a stimulus, and a
PSTH component.

flows or, perhaps, a mixture of flows and gratings.
Tensor CP decomposition, or factorization, has gained considerable popularity in the

past couple of decades with applications to high-dimensional data ranging from analysis
of EEG data [100] to classification of hazardous gases [141], and have been used to ana-
lyze neuronal responses in terms of PSTHs of individual trials [145]. The tensor factors
obtained seem to provide useful summaries of the multi-linear relationships present in the
data.

Naturally, if the system were linear, tensor factorization alone could identify it. Even
though neural processing is known to be highly nonlinear [78], we still believe these fac-
tors can be of great utility as a preliminary dimensionality reduction step prior to the (non-
linear) embedding algorithm. Because each neural factor is associated to both a stimulus
and a PSTH factor in the same component, their neural coefficients essentially tell us how
well each cell’s response to a certain stimulus can be represented (i.e., reconstructed) by
its corresponding PSTH component.
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Step 2: Creating the neural manifold

The resulting factors from our real-world experiments (retina and cortex) are neither sparse
nor simple. As one might expect from circuit interactions, it is difficult to associate indi-
vidual neurons with individual stimuli, which leads to our second dimensionality reduction
stage: creating the encoding manifold. Although the factors are different, neurons have
a distributed role: they can participate in many factors. Stated geometrically, each neu-
ral factor can be viewed as a coordinate dimension, and each neuron can be plotted as a
‘point’ in this neural-factor space. Nearby neurons in this space will have similar loadings
(coordinates) in the different dimensions.

Figure 1.9: Using neural factors as input to a manifold learning algorithm (diffusion maps).

Diffusion maps [31] are used to infer manifolds with network implications. While PCA
seeks a linear manifold based on Euclidean distances, the diffusion map algorithm uses a
similarity kernel to create a nonlinear manifold organized based on a graph/network where
each data point is a node, and local similarity provides the connectivity (Fig. 1.9). Points in
the manifold are then organized by diffusion distance, which measures how much diffusion
can occur from one node to another over the graph: effect, the more paths connecting two
nodes, the closer they are; bottlenecks push nodes apart. Interpreting this for a collection
of neurons, the more paths between them, the closer they will be on the manifold. The
self-excitatory clique motif emerging in connectomics is a perfect example of this [152],
and an artificial example where the circuit topology is perfectly recovered is given below
(ring model).

10



1.3 Simulation examples
Now we present two simulation experiments that will be used throughout Part I as exam-
ples of application of our algorithm. These are particularly simple models with the objec-
tive of, first, confirming that our approach produces the expected results, and, secondly,
clarifying how to interpret the results which will help putting our real-world biological
results from Chapter 6 into perspective.

1.3.1 Ring model

The ring model from [16] is an artificial model of an orientation hypercolumn, as observed
in primary visual cortex of cats and monkeys [69]. Neurons have preferred orientation
evenly distributed between −π

2
and π

2
. Each neuron forms recurrent connections to all

others, with excitatory weights to nearby neighbors and inhibitory weights to the remain-
ing ones (see connection weight matrix in Fig. 1.10. Despite its apparent simplicity, this
model is sufficient to explain several orientation tuning phenomena observed in primary
visual cortex.

After receiving an oriented input (the stimulus), each artificial cell responds propor-
tionally to the similarity between the orientation of the stimulus and its own preference,
and its ultimate change in output (treated as spikes/s) is obtained after integrating the in-
puts from all its neighbors. In our simulation, we used 8 different stimuli with orientations
evenly distributed between −π

2
and π

2
. Each stimulus was presented several times with

Gaussian noise added to make each response virtually unique, given that the model is
deterministic.

1.3.2 Random LN model

Next we simulate neurons following the linear-nonlinear (LN) model ([144, 64, 94]), a
heavily used model in neuroscience due to its simplicity (Fig. 1.11). We investigate the
particular case of using uniformly random receptive fields (RFs) and white Gaussian noise
movies as stimuli. The goal here is to create a system in which each neuron is likely to
respond differently to each stimulus, and then to learn whether our algorithm will produce
results compatible with such scenario. This represent an extreme case since neurons with
different RFs will be essentially “orthogonal” to each other in terms of their responses.

We used two different noise movies were used as stimuli. Spikes were generated by
using the result of the dot product between each movie frame and a neuron’s RF as the
instantaneous firing rate to a Poisson process [93]. This converts the input into a stochastic
binary output (spikes) for each neuron. The PSTHs then register the average amount of
spikes for each frame in the movie.
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Figure 1.10: Ring model of orientation tuning. A: We seek to infer an organization of
neurons that relates to their ‘functional’ role in terms of responses and stimulus selec-
tivity. Although anatomically neurons can be arranged in many ways, intuitively for the
ring model this functional relationship between the neurons implies a ring-like symmetry.
B: Connection profile providing the synaptic weights in the model: neurons with similar
orientation tuning excite each other; otherwise inhibition occurs. C: Matrix of synaptic
connection weights between all pairs of neurons. Positive (negative) values represent ex-
citatory (inhibitory) connections between neurons with similar (dissimilar) stimulus pref-
erence. D: The matrix in C can be used as a graph adjacency matrix by considering its
positive entries alone as edge weights and the neurons as vertices. An embedding of such
graph can be created using a physical model that positions the vertices by considering each
edge as a spring. Stimulus preference varies smoothly around the ring and edges (in black)
connect nearby neurons.

1.4 Motivating Conjectures
One of the foundations of visual neuroscience is the notion of the receptive field: the pat-
tern of light in the visual array that stimulates a neuron. Such receptive fields were first
identified in the retina and later characterized in the visual cortex (see Fig. 1.12). Thinking
of these receptive fields as filters, and placing a nonlinearity in the neural component, pro-
vides the foundation and the origin for modern deep convolutional networks [85]. These
are now used widely in applications of computer vision, and also as models of visual cor-
tex [148, 113, 74, 80, 89] plus references therein. The key idea is that these receptive
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Figure 1.11: Our LN model simulation with random stimuli and receptive fields (RFs).
A: The classic LN model of computation (adapted from [94]). The input x(t) passes
through one or several linear operators Li and their outputs pass through a common static
nonlinearity, being combined into a single output y(t). B: Two examples of localized
random RFs. Neurons with the same RF belong to the same ‘type’. C: One example of
frame from each of the two white noise movies used as stimuli.

field ’filters’ model the functional capabilities of the neuron exhibiting them, and that the
networks are built by composing these filters with nonlinearities [133].

Many different questions are raised by these statements. Based on receptive field char-
acterizations, we first ask whether the simple, complex, and hypercomplex (endstopped)
cells described classically by Hubel and Wiesel [67] yield a sufficent characterization of
their function. Are these three groups of cells distinct and complete; i.e., do they suffice
to characterize visual cortex? In the retina, it is now known that there are about 40 differ-
ent classes of retinal ganglion cells (RGCs) [118, 9]. Given the difference in complexity
between the retina and the cortex, one would expect many more different functional types
of cortical cells. Does this classical categorization suffice, or should the types of cortical
cells be organized differently?

Second is the circuit organization. The Hubel-Wiesel model is feedforward, and deep
convolutional networks are feedforward; is there more to the functional interconnection
structure of the retina and the cortex? Anatomy would suggest so. While the retina has
many feedforward characteristics, the horizontal and amacrine cell types provide for lateral
interactions [38]. Do these lateral interactions dominate for any of the RGC types?

And third, are these feedforward circuits in fact a sufficient model for visual cortex?
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Furthermore, since deep convolutional networks (DCNs) are now widely used as models
of visual cortex, do they suffice? And finally, although such networks are widely used in
computer vision, what lessons should applied computer vision take from them [82]?

Such questions are multi-faceted, and we shall provide answers to them in the context
of this thesis. First, without a rich ensemble of stimuli, it is impossible to know whether
the networks of neurons are exercised to the fullest of their capabilities. It shall turn
out that, in fact, using classical laboratory stimuli (e.g. drifting gratings) is insufficient.
Second, anatomy clearly indicates that cortical networks are not simply feedforward; our
computational techniques will provide richer approximations to them. Finally, we will
compare cortical responses to those of DCNs, and will show that they are lacking.

We summarize our results in two conjectures:
CONJECTURE 1 Although the retina can be viewed as an “outcropping” of the brain, the
(relatively) distinct retinal ganglion cell types differ fundamentally from the functional cell
types in cortex, which are distributed more continuously.
CONJECTURE 2 Although deep convolutional networks have been used as models of cor-
tex, and as models for cognitive vision, they are closer to big retinas than to little brains.

1.5 Overview of this thesis and main contributions
Building manifolds of neurons helps alleviate the sampling issue mentioned above, since
an adequate kernel choice can, to some extent, correct for local changes in density. Fur-
thermore, by embedding neurons directly as points we naturally allow for the combination
of multiple recordings into a single manifold. However, given the multiple-mode nature
of the data (several response arrays for several stimuli), we found that the quality of the
diffusion map embeddings can be improved if one preorganizes the neurons’ responses in
terms of neural factors, a product of non-negative tensor factorization (NTF) (Chapter 2).

Basically, NTF provides a multi-clustering approach to specify which groups of neu-
rons respond similarly (in time) to which components of the stimulus ensemble. As will
be shown, when the neural factors are independent, this can suffice for determining which
neurons respond to which stimuli.

A substantial difficulty arises, however, when the different neural factors are inter-
twined with one another, meaning multiple neurons respond to multiple stimuli. This can
be interpreted as neurons being coupled in circuits. Clearly, for the visual system, this
is the case when any reasonably dense sampling of neurons is obtained. We study this
situation using a new construct: the neural matrix (Chapter 3). The neural matrix is one
of the main contributions of this thesis for machine learning, since it provides an interface
between multi-linear methods and nonlinear manifold learning. Its rank, in particular, has
important implications for the neuroscience data analysis problem, and, we predict, for
many other problems.
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Figure 1.12: From receptive fields to deep neural networks. (a) Visual receptive fields in
the lateral geniculate are circular-surround. Collections of aligned cells project to visual
cortex, forming a simple cell. Orientation selectivity arises from the alignment of recep-
tive fields. (b) An arrangement of simple cells with ’edge-like’ receptive fields combine
nonlinearly to provide a complex cell. (c) Sketch of the hierarchy of visual function in
Hubel-Wiesel terms. (d) Alexnet [81], a deep network that elaborates this composition of
convolutions with nonlinearities, inspired the deep learning period in artificial intelligence.
Diagrams in (a) adapted from [68].
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Both algorithms require the choice of critical parameters, namely the number of factors
to use in NTF and the kernel scale in diffusion maps. We propose a method for determining
the optimal number of factors for NTF based on the rank of the neural matrix in Chapter 3,
and a more robust similarity kernel for diffusion maps based on graph sparsification in
Chapter 4. Formulating and analyzing the neural matrix as an interface between tensor
factorization and manifold learning provides the main technical contributions of the thesis.

In order to meet the challenge of using stimuli that adequately exercise the visual sys-
tem while being amenable to analysis, we have developed and tested an ensemble of flow
patterns, a class of naturalistic visual stimuli that span spatial and temporal frequencies,
contrast, orientation and directionality. In Chapter 5 we explain in detail how these are
generated and how neurons in mouse primary visual cortex respond to them in compari-
son with traditional drifting gratings.

In Chapter 6, we apply our procedure to biological neurons recorded from mouse retina
and primary visual cortex (area V1), as well as to artificial ones in deep convolutional
networks. Retinal ganglion cells (RGCs) produce a highly clustered embedding, where
each cluster corresponds roughly to a known RGC type. On the other hand, the cortical
manifold is qualitatively different, and there is a continuous change in response proper-
ties as one navigates through it. Specific regions of the manifold contain molecularly and
anatomically distinct collections of neurons; the molecular and anatomical specificity was
not used in the creation of the manifold, but its emergence confirms the validity off the
diffusion map analysis. Furthermore, when we apply our algorithm to artificial neurons
in deep convolutional nets we see highly clustered embeddings, with each cluster asso-
ciated to a different feature map. Moreover, we introduce a measure of how ‘clustered’
(as opposed to continuous) an embedding is, which allows for a quantitative comparison
between the overall architectures of the functional networks obtained for the different data
sets.

We conclude with a discussion, in Chapter 7, of what can be inferred from the con-
trast between the different types of manifold obtained for different systems, and how can
our approach be used to identify the usefulness of novel visual stimuli in biological ex-
periments. In particular, how the rank of the neural matrix may be used to identify the
redundancies present in a stimulus ensemble.
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Part I

Algorithm development
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Chapter 2

Data factorization

• Goal: Initial organization of neurons, stimuli, and responses based on a multi-
linear model;

• Method: Non-negative tensor factorization;

• Results: Organization of the tensor; representation of data as PSTHs; algorithm
selection; numerical results on artificial problems.

2.1 Matrix factorization vs. tensor factorization
The goal of matrix factorization is to factorize a matrix into a product of (usually) two
matrices such that their product recovers the original one, or an approximation of it. In
many cases, the resulting decomposition can reveal latent features (factors) which provide
insight into the main interactions between rows and columns of the original data matrix
(the interpretation will depend on whatever physical meaning the rows and columns have).
In data analysis it is typically used to find a low rank structure that is sufficient to approx-
imate the data using fewer dimensions. Underlying is the assumption that a big part of the
original data matrix is either redundant or unessential for effectively organizing the data
points.

One ubiquitous example of low-rank approximation of a matrix is principal component
analysis (PCA), used to obtain a low-dimensional (orthogonal) representation of the data
that tries to preserve most of its variance. When one is interested in both the column
structure and the row structure of the matrix, however, then matrix factorization (MF)
is generally used to capture the latent factors, and might enforce properties other than
orthogonality on the resulting factors, such as sparsity or non-negativity. Non-negative
matrix factorization (NMF) is a class of algorithms whose goal is to explain the data by a
parts-based additive representation, where zeroes represent absence and positive numbers
represent the presence of some property or component [30]. Oftentimes this provides for
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more easily-interpretable results when using naturally non-negative data such as images,
firing rates, probabilities, etc.

However, there are many circumstances in which data collection allows for a multi-
mode analysis. This typically occurs when, in addition to the usual physical dimensions
(space, time, etc.), there are multiple sensors being used, or multiple subjects performing
either the same or several different tasks. In these cases, the data is more naturally repre-
sented as a higher order tensor, and analyzing it using tensor decomposition (as opposed
to re-organizing the data to fit standard matrix-oriented algorithms) might help reveal ad-
ditional structure by preserving all dimensions in the data and allowing for a multi-linear
model to hopefully produce physically meaningful components [30, 77, 2].

Tensor factorization (TF) methods for big data analysis have only recently gained con-
siderable popularity, but are quickly becoming a key tool for the extraction of features
and multi-linear structure from high-dimensional data. Although different types of de-
composition exist (see, e.g., [77] for a review) we will focus on the Canonical Polyadic
/ CANDECOMP / PARAFAC (CP) tensor decomposition, which was developed in the
1970s [21, 57] but first invented almost a century ago [62, 63].

2.2 CP decomposition
Recall that in matrix factorization a matrix M is approximated by a sum of R rank-one
matrices:

M ≈ ABT =
R∑
r=1

arb
T
r . (2.1)

Typically, the goal is to find a low-rank approximation ofM , which meansR is smaller
than the true rank of M . This means each entry in M can be expressed using fewer dimen-
sions, which creates a good “summary” of the data. This can make the data easier to
embed, or to cluster, by making the distance relations between data points more ‘mean-
ingful’. Other applications include compression, denoising, matrix completion. Looking
at the factors that allow for this summarization might provide helpful insight into what
underlying features are most important within the data set.

Analogously,1 we can approximate an n-way tensor T ∈ RI1×I2×...×In is approximated
by a sum of rank-one tensors (illustrated in Fig. 2.1):

T ≈ T̃ ≡
R∑
r=1

v(1)
r ◦ v(2)

r ◦ . . . ◦ v(n)
r , (2.2)

where R is the number of components chosen, and “◦” stands for the vector outer product.
We say each rank-one tensor is formed by the outer product between each factor in the

1See [145] for a detailed comparison between CP and PCA.
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same component (we follow the convention that a ‘component’ refers to each set of asso-
ciated factors, one from each tensor mode). This notation can be made more analogous
to eq. 2.1 by explicitly denoting the factor component matrices (following [76]), as shown
below for the specific case of a 3-way tensor:

T̃ = [[A,B,C]] ≡
R∑
r=1

ar ◦ br ◦ cr, (2.3)

where A is called a factor matrix containing the factors ar as its columns, and similarly
for B and C (in our specific examples from part 1.3 these would be the neural, stimulus,
and PSTH matrices). It is also convenient to assume that all columns are normalized to
unit length, with the weights absorbed into a vector λ ∈ RR. This can be denoted as:

T̃ = [[λ ; A,B,C]] ≡
R∑
r=1

λrar ◦ br ◦ cr. (2.4)

Algorithms for CP decomposition are usually based on the alternating least squares
(ALS) method ([22, 58]), and several variations exist [30]. Most of them use squared
reconstruction error as objective function:

min
A,B,C

‖T − T̃‖2
F. (2.5)

where ‖ · ‖F is the Frobenius matrix-norm.

Figure 2.1: In CP decomposition, an n-way tensor T is approximated by a sum of rank-
1 tensors. Each rank-1 tensor is called a ‘component’ formed by the outer product of n
vectors called ‘factors’.

Since our data comes from neuronal firing rates (averages over spike counts), we
choose to use non-negative tensor decomposition (NTF), which is formulated as in eq. 2.5
with an additional non-negativity constraint. While it is true that the inclusion of this con-
straint may decrease some of the explained variance [30], on the other hand one gains
in ease of interpretation of the components. Also, results from [145] indicate that it pro-
duces more stable factors, is unlikely to overfit, and has comparable parameter efficiency
(in terms of number of learned parameters required for achieving similar error as negative

20



TF). We experimented with different algorithms, but the preferred one is the gradient-
based direct optimization approach (OPT) from [3], which was shown to give higher ac-
curacy if “overfactoring”. This prevents degeneracy of the solution, which can be helpful
when making a choice on the number of factors to select.

A few peculiarities: the factor matrices are not orthogonal and may in fact have linearly
dependent columns. Importantly, the best rank-r factorization may not be part of the best
rank-(r − 1) factorization [77]. Because NTF requires an initial guess for the factors, each
run may yield different results, even when the same number of components is chosen.

2.2.1 Tensor normalization

Because the objective of the TF algorithm is to minimize reconstruction error, as defined
in eq. 2.5 (although see [65] for the use of generic cost functions), PSTH patterns with
longer periods of activity (or with larger area) will be more advantageous in terms of cost
minimization compared to more sparse patterns. This creates a bias towards producing
factors for reconstructing all of the ‘sustained’ response patterns first, which might well
represent an entire stimulus. The solution to make all PSTHs ‘equal’ under the “eyes” of
the TF algorithm is to prenormalize them to have unit norm.

There is one further complication, though: when each neuron responds to multiple
stimuli, it is desirable to preserve the relative levels of activity between each stimulus. So
we normalize each PSTH from the same neuron to have norm equal to the their average
firing rate (FR) divided by the maximum FR among all stimuli (i.e., a real number between
0 and 1). In this way, the original magnitude of the FRs is discarded, but the relative FR
between stimuli is preserved (something akin to the relative “importance” of each stimulus
for that cell). Each neuron is thus given equal total weight.

We maintain this relative scale, however, because in our experiments most neurons
have a clear preference for some subset of the stimulus ensemble, while their response to
other stimuli is nearly zero—but almost always not exactly zero, since neurons typically
have a resting or background activity level (which can oscillate over time, so even if that
level is subtracted from the PSTH—a common procedure in the literature, but see [131]—
some sparse spikes are likely to remain). Therefore, normalizing all PSTHs individually
would cause these spurious spikes to be greatly amplified and possibly affect the resulting
factors.

Of course, normalizing each PSTH individually is also a valid (and simpler) approach,
suitable when one is not dealing with neuronal spikes, or knows that all neural responses
are significant and should be treated with equal importance by the factorization algorithm,
but is inappropriate here.
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2.3 Interpreting the resulting factors
Tensor CP decomposition encounters diverse applications such as analysis of EEG data
[100], student interaction in a social network[65], weather patterns [65], and classification
of hazardous gases [141], to cite only a few. In [145], examples are given of applications of
NTF to neuronal activity for different experiments, including spatial navigation in mouse
prefrontal cortex (see also [65]). In particular, those authors in [145] in analyze spike trains
of neurons in response to different trial conditions, construct a tensor whose modes are
neurons, trials, and PSTHs. As in most uses of CP decomposition, the factors are treated
as the end-result themselves, with conclusions being drawn from the patterns present in
each factor. This might be sufficient when the data is highly clustered or low-dimensional,
or when the different types of trial (e.g. stimuli used) have little interaction, since in these
cases participation of subsets of the data points across the different factors is likely to be
mostly disjoint. This will be the case for the examples that were introduced in 1.3, as
shown below.

Our tensor uses neurons, stimuli, and PSTHs as modes. We choose not to use individ-
ual trials since there is no expectation of change in the responses over different repetitions
of the stimulus, as in e.g. a learning task. Furthermore, by using stimuli as a mode, we
obtain more interpretable factors that directly relate to parts of the stimulus ensemble.

In Fig. 2.2, we can see that, for the ring model, the neurons present in each factor
overlap slightly as we move from one stimulus to the next (sorted by orientation). This
happens due to their response function decreasing slowly as a function of the difference
between their preferred orientation and the orientation of the input stimulus. Now, since all
neurons respond with the same temporal dynamics (minus noise), a single PSTH pattern
is required to accurately reconstruct the responses to any of the 8 stimuli in the original
tensor. Therefore, 8 components is all we need, regardless of the number of neurons used.

In the LN model with random stimuli/RF (Fig. 2.3), the data is highly clustered since
each different RF responds quite differently to each different stimulus. This gives rise to
separate factors for each combination of RF and stimulus. Since there are 10 different RFs
and 2 stimuli (and they are all nearly orthogonal due to their random nature), we need 20
factors in total, regardless of the number of neurons having the same RF, since these will
be all grouped together in the same factors encoding for their RF-stimulus combination.

2.3.1 When factors become entangled

In the general scenario where the same cells (or whatever entity is being encoded by the
tensor) participate in multiple factors, or when the same stimulus can elicit multiple tem-
poral response patterns, the complexity of the results becomes a challenge, and visual
inspection alone is not sufficient (as will be shown in Chapter 6).

However complex the neural factors might be, their information is still useful, and in
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Figure 2.2: The 8 components (each row) obtained with tensor factorization for the ring
model simulation. Each stimulus (i.e. orientation) used is assigned to an individual factor,
and each corresponding group of cells overlaps with the ones from neighboring orienta-
tions. The PSTH factors are all identical, although each neuron’s PSTH is really a noisy
version of that pattern.

fact represented in fewer dimensions, which makes the set of factors a good candidate for
being fed to other machine learning algorithms (in the same way that PCA can be used
before a clustering algorithm, for example). On the other hand, the tensor structure of
each component makes this non-trivial, since the vast majority of algorithms accept only
matrices as input.
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Figure 2.3: Examples of the 20 tensor factors obtained when using one neuron per type
(N=10): each component ‘explains’ a single neuron for a single stimulus.

However, if one is interested in organizing only one of the tensor modes (in our case,
neurons), its corresponding factor matrix N can be seen as providing an encoding of the
full information in the components: since each factor is associated with other factors in
different modes, one can “read” each row in N as expressing the amount of each com-
ponent needed to represent that entity (in the case of a neuron, which PSTH patterns are
present in its response to each stimulus).

Thinking now in terms of columns ofN (i.e., the neural factors), what do they actually
represent? In the literature, non-negative factors are usually thought of as providing a
parts-based representation of the data. How can we extend this notion of ‘parts’ to neural
factors?
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Our data represents the responses of multiple neurons over time for trials of different
stimuli. If we treat the recorded neurons as our sampled ‘population’, then at every instant
there is a certain population activity profile, or neural configuration, that changes through-
out the time course of each stimulus presentation. This means our neural factors could be
deemed as parts of such configurations: each one shows the average population activity
for a certain stimulus (or stimuli), but restricted to the cells that respond with a similar
PSTH pattern.

We will develop in the next few sections an approach to using neural factors as lower-
dimensional representation of the tensor data, which provides a principled way in which
the information contained in the components can be used for posterior analysis using ad-
ditional machine learning techniques.
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Chapter 3

The neural matrix

• Goal: Use the tensor neural loadings as a basis for constructing kernels for
manifold learning;

• Method: Use the rank of the neural matrix rather than reconstruction norm;

• Results: Rank of neural matrix indicates individual contributions of different
stimuli; supports kernel development when factors are entangled; when orthog-
onal, reveals functional types.

3.1 Factor magnitudes
In the output of CP decomposition, each factor vector might have its own magnitude; as
shown above (eq. 2.4), it is common practice to make them all equal to 1 and collect
their original magnitudes into a single scalar, λf =

∏M
k=1 ‖f

(k)
f ‖ where f indexes the

component and k the factor mode, for an M -way tensor. Hence, reconstruction of an
individual data point can be expressed as:

xi =
F∑
f=1

λff
(1)
f ◦ f

(2)
f ◦ . . . ◦ f

(M)
f , (3.1)

and for the entire tensor as:

T̃ = X(1)Λ
(
X(2) ◦X(3) ◦ . . . ◦X(M)

)
, (3.2)

where Λ is the diagonal matrix with entries Λff = λf .
Now, assuming our neural factors represent the first mode (k=1), we can denote X(1)

by N . It is helpful to think of the outer product between the remaining modes of each
component as representing a basis vector (i.e. if one vectorizes the resulting (M −1)-
way tensor, resulting in a unit-norm vector). (More precisely, this collection of vectors
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represent a frame since in general it will be redundant, i.e. contain more vectors than the
true dimensionality of the space that they span.) We can then define a matricized version
of T , call it X(N ), as:

X(N ) ≈ NΛB (3.3)

with each column in B being

B:,f ≡ vec
(
f

(2)
f ◦ f

(3)
f ◦ . . . ◦ f

(M)
f

)
(3.4)

for f = 1, . . . , F . In this case, λff
(1)
f can be thought of as coordinate coefficients for such

frame. Therefore, in order to make the entries in N have a straightforward meaning, we
can multiply each of its columns, i.e. ff , by their corresponding λf :

Nλ = NΛ. (3.5)

The matrixNλ now contains all information needed to reconstruct each neuron in terms
of its ‘stimulus-response’ frame. Interestingly, rearranging eq. 3.3 as

X̃(N )B
−1 = NΛ (3.6)

makes it remarkably analogous to the formula for projection of the data points onto its
principal components in PCA: XṼ ≈ Ũ S̃ (from diagonalization of X by SVD as
X = USV T , and with the tilde meaning only the top PCs are used in the approximation).
In other words, we approximate each xi as a linear combination of the ‘stimulus-response’
frame vectors bf in B:

xi ≈
F∑
f=1

(yi · bf ) bf . (3.7)

where yi stands for the i-th row in Nλ. So yi expresses new coordinates for xi.
Additionally, it might happen that a group of cells show the same response pattern,

P to a single stimulus but that pattern ends up split into two (or more) factors. This can
happen if other cells’ responses share part of that pattern; then, an “intersection” factor
becomes part of the result, with the remainder of pattern P being allocated to a second
factor. If all responses have been prenormalized, the coefficients in the λ-scaled neural
factors will automatically account for this splitting, with the sum of coefficients for the
same cell and stimulus adding to approximately 1, regardless of the number of factors into
which they were split).
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3.2 Metric correction
In machine learning, when no prior information is known about the relationship between
the coordinates describing features from the raw data, the assumption of an orthogonal
basis seems reasonable and it means a dot product (inner product) between two vectors
a and b in Rl can be computed simply by taking their elementwise product followed by
summation:

a · b = aTb =
l∑

i=1

aibi (3.8)

assuming column vectors. However, when using the neural matrix N ∈ RN×F , we know
that each entry Nij is a coefficient specifying how much of the j-th factor is used to
reconstruct the i-th data point. In other words, it can be interpreted as the projection of xi
onto the (non-Cartesian, i.e. non-orthogonal or oblique) coordinates given by the tensor
factors. This means no assumption about orthogonality is necessary: we can compute the
appropriate metric g ∈ RF×F for taking dot products in this frame, where g is the matrix
composed of the pairwise dot products between the basis elements gij = fi · fj . Then, the
general expression for the inner product between vectors a, b in the space spanned by the
neural matrix columns becomes:

a ·N b = aTgb

= a1b1(f1 · f1) + . . . + a1bF (f1 · fF ) +

. . .

+ aF b1(fF · f1) + . . .+ aF bF (fF · fF ).

(3.9)

Notice this reduces to the familiar formula in eq. 3.8 when g is the identity (as in an
orthonormal basis). The vector norm in this space is thus defined in terms of this modified
inner product as:

‖v‖ =
√
v · v =

√
vTgv. (3.10)

(Since g is symmetric positive semi-definite, this new norm still obeys symmetry, positivity
and the triangle inequality.) Therefore, the squared distance formula analogous to squared
Euclidean distance in this space becomes:

‖a− b‖2 =
√

(a− b)Tg(a− b) = ‖a‖+ ‖b‖ − 2aTgb. (3.11)

This will be used in Chapter 4 when computing distances for diffusion maps.
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3.3 Choosing the number of tensor factors
When using neural factor matrix N as an intermediate low-dimensional representation of
the data, it becomes important to make an educated guess for the number of factors to
choose when running NTF.

When reconstruction error is the main desideratum, one can simply pick the minimum
number of factors that is sufficient to achieve an error below some prespecified tolerance.
Our main goal, however, is to find a “good” kernel, or features, that maximally organize
the data, regardless of how accurately is it reconstructed (although both requirements are
certainly related to same extent). In general, the selection the number of factors F , i.e., the
effective dimensionality of the latent space, is a tuning parameter whose selection is quite
challenging and computational costly [155].

A different approach defines a notion of similarity between the components resulting
from different initializations for the same F ; ideally one looks for a robust solution, so an
F should be chosen for which this similarity is high [145]. In [155], a an automated infer-
ence scheme under a variational Bayesian framework is proposed, and applied to tensor
reconstruction/completion problems. However, for our particular problem of maximally
organizing neurons (or entities), we do not necessarily need to satisfy the full tensor rank;
we can restrict our rank requirements to that of the matrix N , which we expect can make
our problem more easily tractable.

In section 2.3.1 we searched for a conceptual meaning of neural factors. How could
we extend those ideas to explain what the rank of Nλ means? First, note that the PCs are
an economical (orthogonal) way of summarizing the information present in the columns
of the original matrix, or a linear combination of parts of states s.t. the cells are maxi-
mally organized using the fewest columns. Thus, while neural factors are parts of neural
configurations, PCs do not necessarily carry that same clear meaning. Nevertheless, the
notion of rank that emerges from them still says something about the “diversity” of these
configurations in terms of which neurons fire together and which don’t, regardless of their
specific response patterns (or parts of patterns). The space spanned by the PCs is the
“neural space”, and the rank of Nλ quantifies the dimensionality of this space.

Under this view, it makes sense for us to turn the problem of determining the optimal
F into that of determining the rank ofNλ. This non-trivial task will be elaborated through
the remainder of this chapter.

3.4 The approximate rank of a data matrix
Most real-world matrices contain some degree of noise, redundancy, or uncertainty in its
entries, so almost surely will have full rank (in the linear algebra sense), but rarely does
that represent their “true” rank, that is, the actual number of coordinates (or basis vectors,
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or latent variables, . . . ) required to express the idealized (i.e. noiseless) version of the data
in it. It is also possible that the ‘relevant’ information lies in a lower dimensional space. In
fact, quite often data matrices in the sciences will have a low-rank structure, a fact that is
exploited by a multitude of machine learning algorithms and is precisely what allows any
‘learning’ to occur in the first place (see [137] for a theoretic discussion on why real-world
data matrices are typically low-rank).

Perhaps the most commonly used method to provide a qualitative estimate of rank for
a data matrix A is PCA. PCA eliminates that redundancy by re-expressing it in terms of
an orthonormal basis formed by the eigenvectors of the sample covariance matrix. Its
eigenvalues express the variance of the data when projected onto each eigenvector. The
principal components (PCs) are then chosen as those eigenvectors with largest variance.1

The variance plot (or Scree plot) can be inspected to provide a subjective estimate of the
rank as the number of PCs that account for (or “explain”) the majority of the data variance,
and relies on there being a significant gap (a.k.a. an “elbow”) between the variance of the
first few “true PCs” vs. the remaining ones. Similarly to the situation with the reconstruc-
tion error plot, sometimes (e.g. as in Fig. 3.5) that can be easily done, but not always
(Fig. 3.1. This approach can be made quantitative when the problem at hand allows one to
specify the exact percentage of variance required.

The numerical ε-rank, rε, of a matrix A ∈ Rn×l is defined as

rε = min
(
rank(B) : B ∈ Rn×l, ‖A−B‖2 ≤ ε

)
,

where ‖·‖2 stands for the spectral norm, and rank(B) is the true rank of some matrix B. In
other words, it corresponds to the number of columns of A that are linearly independent for
any perturbation of A with norm at most ε [136]. The singular values σi, i ∈ [1,min(n, l)]

of A with ε-rank rε must, therefore, satisfy σrε > ε ≥ σrε+1 . This rank should be robust
to small perturbations on the choice of ε and the principal values σi. It becomes clear,
then, that in practice this will only hold when there is a sufficient gap between the set of
{σi}, i ≤ rε and the remaining {σj}, j > rε associated with noise [52, 55, 136].

This really implies that the main requisite for determining approximate rank is deter-
mining which gap between two consecutive singular values is the “correct” one. Many
possible spectra are possible, as depicted in Fig. 3.1; for some of them this is an easy prob-
lem, for others not at all. One approach for determining the optimal gap is by inspecting
the ‘density-of-states’ (DOS) curve, which essentially computes a probability distribution
over the range of singular values, i.e. the spectral densities [135, 136]. Starting from zero,
one looks for the first sharp drop in density followed by a valley, which signifies a range
of values that no singular value assumes, i.e. a prominent gap in the spectrum. It basically

1This is equivalent to computing SVD on the centered data and using the top right singular vectors as
PCs (when data are row vectors), and computing the sample variances as the squared singular values scaled
by 1/(N − 1).
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attempts to cluster the singular values into relevant vs. irrelevant groups. For cases like
that of Fig. 3.1-D, there might be no such gap, so an empirical threshold parameter needs
to be introduced for this choice to be made automatically [136].

Figure 3.1: Examples of possible spectra of singular values of a data matrix. While the
case in A is ideal for determining the approximate rank due to its well-defined gap between
the first few singular values and the rest (approximately zero). In B, a choice must be made
between two gaps: the first is taller but the second is sharper. In C and D it is difficult to
identify any clear gaps.

Another class of methods take on a more rigorous statistical point of view. For ex-
ample, classical results on the asymptotics of the PCA spectrum exist but for specific
scenarios, such as when the noise variances in all PCs are known and are all the same
[7]. Approaches based on Stein’s Unbiased Risk Estimator (SURE) [17] adopt an un-
biased estimator (assuming additive Gaussian noise) for the mean square error between
the true signal and the reconstructed one, and use number of PCs that minimizes SURE
[147, 18, 138]; this approach is combined with a cross-validation scheme in [139]. In [25],
an exact distribution-based method is proposed for hypothesis testing and construction of
confidence intervals for signals in a noisy matrix (again under Gaussian noise assumption).

Information-theoretic methods form yet another class of methods (e.g., [5, 120]) but
typically require that the number of data points be large compared to their dimensionality
[147]. Numerous other approaches have been proposed for rank estimation in specific
applications (e.g, music transcription [87]), with matrix completion being a particularly
popular one (e.g, [122, 71]).

It becomes clear after considering these examples that the choice of a rank estimation
method is application specific and that different approaches may apply depending on the
available information, such as the statistics of the noise present in the data. Also, note that
the notion of estimating the rank of a general matrix A is usually associated with that of
selecting the number of principal components in PCA, given that in general A is rectangu-
lar; furthermore, in data analysis centering the data points is also a welcome preprocessing
operation. Although they can be made unit-norm, tensor factors are not orthogonal, which
means an inherent degree of redundancy is expected. SVD naturally eliminates that re-
dundancy by re-expressing it in terms of an orthonormal basis. Furthermore, determining
the rank based on the variance explained by each component is attractive since it directly
relates to our goal of “maximally organizing” the data points.
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3.5 Determining the rank of a factor matrix
Because our matrix is a product of tensor decomposition, we find ourselves in the partic-
ularly advantageous position where we can produce an arbitrary number of matrices (by
making different choices for the number of tensor factors, F , and random initializations
for NTF) that should all express the same underlying structure. When F is small, we
can imagine that there are not sufficient tensor factors to capture all the relevant structure
present in the data. When F is too large, we may observe degeneracy of the resulting
components (e.g. some factors capturing mostly noise, other meaningful factors being
split up), which would tend to make for a poorer organization of the data. So, intuitively,
we would expect to find an intermediary range for which the PCs remain approximately
stable and optimally express the inner data structure. Yet another particularity is that, even
if the original tensor noise could be reasonably approximated as Gaussian (which it is
probably not, due to Poisson-like nature of spiking processes [93]), the “noise” introduced
by under- or overfactoring is of a different nature entirely.

We propose an approach that aims to exploit this rather unique scenario. Instead of
focusing on finding the largest gap in the spectrum, we will attempt to determine the
“meaningful” principal values (PVs), i.e., the variances explained by each of the PCs,
based on their evolution as F increases.2 We will define a method for deciding on the
approximate rank R of our neural factor matrixNλ by using the illustrative example of the
ring model simulation.

3.5.1 Ring model

Our idea arises from the empirical observation that some principal values (PVs) increase
rapidly in value and then decrease as we choose a larger number F of factors, while others
increase slowly and never reach a distinctive peak. The former behavior is usually ob-
served for the top PVs; the latter is typical of high-numbered PVs (those toward the “end”
of the spectrum). This is precisely what happens in Fig. 3.2-A: notice how all the first
λ’s seem to achieve a maximum before decreasing in value, while others appear to mono-
tonically increase until they reach a plateau. Furthermore, for large F , while the gaps
between all of the first 7 λ’s decrease, the distinctive gap between λ7 and the remaining
ones remains stable.

How to explain what is happening? Starting with small F , the very first few PCs
that emerge usually remain stable for some range of values of F ; their variance is high
and eventually reaches a peak or a plateau. This implies that the neural factors in that
range have a considerable reconstruction power (since the PCs returned by PCA/SVD are

2We prefer to use PVs (i.e. the eigenvalues of the sample covariance matrix), instead of singular values
of the data matrix since the former assign an intuitive meaning to the spectrum that is directly related to data
organization in space, which is really our ultimate goal (as exposed in Chapter 1).
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Figure 3.2: Determining neural matrix rank and optimal number of tensor factors for the
ring model data set. Variances were computed as the mean across 25 repetitions of the
NTF algorithm using a random initial guess. A: The evolution of each top PV (labeled as
λi, i.e., variance explained by the i-th PC, for i = 1, . . . , 10) is plotted against F . (Refer to
text for details.) B: for large enough F , there is a tendency for the meaningful PCs (λ1–λ7)
to lose variance explained, and for noisy PCs to slowly accumulate it (the arrows represent
this trend). C: Sum of variances explained by the first R = 7 PCs. Each dot represents a
single run of NTF, and the blue curve is their mean variance sum. The optimal F is defined
as that which gives the maximum sum of the R first variances.

linear combinations of the neural factors in Nλ).3 Then, as we ask for more and more
factors, eventually the “new” ones will “rob” variance from the top PCs (given that the
factors together cannot reconstruct “more” than what’s in the original data). As mentioned
earlier, the best factors for some choice of F = k may not be part of the best factorization
with F = k− 1, so a more accurately description is that larger F s cause some factors that
remained stable over some interval of smaller F s to no longer be a part of the solution,
being “split” into two or more novel factors that, together, will approximately reconstruct
the same parts of the data.

This phenomenon is illustrated in Fig. 3.3. In particular, observe the degeneracy that
begins to occur subtly after F > 8 and becomes stronger as F � 8. All factor plots

3Note that factors with high reconstruction power are not sufficient for obtaining high variance PCs but
the latter is conditional on the former, since factors that explain few neurons are unlikely to affect the overall
variance of the data points. This is why using reconstruction error is a useful objective function in our
approach despite not being our main concern.
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use the same color scale, so notice how, for F < 8, some of the factors exhibit a non-
uniform distribution of coefficients for the neurons in their “stimulus-preference cluster”.
At F = 8, rearrangement of their order gives an approximately block-diagonal identity
structure, with near-perfect uniformity between the clusters. For F > 8, some clusters
begin to overlap (as there are now more factors than response patterns), which in turn
causes them to have smaller coefficients. For F � 8 some of them become “noisy”,
exhibiting discontinuities in the interval of neurons that they cover.

This is also reflected in the left singular vectors (SVs) (i.e. the linear embedding one
obtains by projecting Nλ onto its PCs): note how the first F − 1 SVs organize the points
into coordinates with large variance (these also look like spatial frequencies, as expected
due to the nature of PCA); also note that, because of the block-diagonal structure of Nλ,
one of the factors can be expressed as a linear combination of the others, so that makes
the last PV be approximately zero. Observe that, for large F , the same splitting phe-
nomenon occurs, and the first SVs begin to cover fewer neurons, which brings their vari-
ance down and increases the relative importance of higher-numbered PCs. This latter fact
becomes more clear by inspection of their corresponding PVs for the same range of F
values (Fig. 3.4).

Note how, as F becomes large, the low-numbered PVs are decreasing. Meanwhile,
the high-numbered PVs go from initially zero to some small non-zero values. This means
the top PCs explain less and less variance, while the “bottom” PCs slowly increase their
explained variance.

Fig. 3.2-B summarizes what is happening by plotting the initial spectrum (top 12 PVs)
for different values of F beyond the ideal 8. Observe how, as F increases, the variances of
the first 7 PCs are decreasing, while that of the PCs beyond the eighth are increasing (the
arrows represent this trend). (This latter fact can only be noticed once a log scale is used,
since their actual values are very close to 0.) The eighth PV, λ8, can be seen pictorially as
a “fulcrum” splitting the two groups.

We use the plot in Fig. 3.2-A to determine the rank R of our neural factor matrix Nλ.
Notice how all the first 7 λ’s seem to achieve a maximum before decreasing in value, while
others appear to monotonically increase until they reach a plateau. Furthermore, for large
F , while the gaps between all of the first 7 λ’s decrease, the distinctive gap between λ7

and the remaining ones remains stable. This is used to set the rank R of the neural matrix
as 7.

Finally, in Fig. 3.2-C we build the curve of sum of variances for the first R = 7 PCs.
The optimal F is defined as that which gives the maximum sum of the R first variances;
or, one can choose the specific repetition of NTF that yielded the highest variance sum
(note that it is possible for an individual repetition for a different number of factors F ′ to
have higher variance sum; in these cases, one can choose to use that particular result as the
optimal one instead). Interestingly, the variability across different repetitions for the same
F increases markedly for F > 8, which alludes to the method for selecting the number of
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A

B Left singular vectors

Neural factors

Figure 3.3: Visualization of the neural matrix Nλ and associated left singular vectors as
heat maps for the ring model simulation described in Chapter 1 using various choice for
the number of tensor factors F . Each plot in A depicts the first 8 columns of Nλ (i.e.
neural factors sorted by their associated magnitudes λ in decreasing order), while the ones
in B show the top 8 singular vectors—scaled by their corresponding singular values—also
as columns (rows represent neurons).
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Principal values

Figure 3.4: Evolution of the neural matrix’s covariance spectrum for the ring model data
set as the number of factors, F , increases. The top 8 principal values are shown.

factors based on similarity between different repetitions mentioned in section 3.3.
Referring back to the factors shown in Fig. 2.2, the choice of 8 tensor factors summa-

rizes, in a balanced manner, which groups of cells respond to which stimulus orientation
and with which intensity, and the neural manifold exactly captures the circular symmetry
of the relationship between the neurons (Fig. 1.10). Observe that no information about
connectivity was used as input to the algorithms. This means that, in fact, we are inferring
‘functional connections’ between the neurons, which in turn implies they participate in the
same, or related, circuits.

3.5.2 Random LN model

Next, we analyze the analogous results for the random-RF LN model (from section 1.3).
We shall see if the same logic applies to the decomposition of a different data set, and
whether we can gain further insight into the interplay between tensor factors and the rank
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of the factor matrix.
In the specific case when each neuron has its own RF (i.e., there is a single neuron of

each “type”), the most reasonable decomposition is for each neuron to have its own set
of factors, since there is almost no overlap between their responses. The neural matrix
should thus resemble the identity when there is a single stimulus; for more stimuli, we
have multiple exclusive columns for each neuron (see Fig. 3.5), but in both cases the prin-
cipal value distribution is nearly uniform, with N − 1 non-zero PVs, since the stimuli are
combined into the same PC for each RF type. When there is overlap between responses,
however, individual neural factors begin to explain several neurons, with the amount of
organization each factor imposes on the neuronal population ultimately determining the
amount of variance with which that factor contributes.4

Therefore, it appears that in theory there is a general limiting case in which all PVs
explain the same variance, which happens when F hits a ceiling (at most F = N × S,
whereN is the number of neurons and S the number of stimuli), and explains the observed
evolution of PV spectra as F increases (Fig. 3.2-B and Fig. 3.5-C). This indeed happens in
our random-RF LN model; in practice, with real neural data several neurons share enough
similarities in their responses that they will always share some of the factors.

The two plots in Fig. 3.5-A compare the neural matrices obtained when 20 and 25
factors are used. In the first one it is clear that each data point uses (or ‘is explained
by’) two factors very strongly, and almost none of the others; concurrently, each factor
describes the response essentially by a single data point (i.e. by a single RF). This is in
agreement with what is known from the experiment: two stimuli were used, and each one
produces a distinct response for each RF. When using 25 factors, however, note how some
points now require more than 2 factors to be reasonably reconstructed, and not all factors
have a clear selectivity for a single RF. This is in agreement with our observations for the
ring model (Fig. 3.3-A). Examples of the resulting factors were given in Fig. 2.3.

3.5.3 WNIST

In this section we introduce a new data set called WNIST (short for Writers’ NIST, in anal-
ogy with the famous MNIST data set from [86]). It contains a collection of handwritten
digits organized by their writer’s identity, i.e.: each data point contains one sample of each
digit from 0 to 9 written by the same individual. Since in the original NIST database [53]
each individual wrote the same digit multiple times, it is thus possible to have multiple
data points corresponding to the same writer (Fig. 3.6). Each data point can be thought
of as a collection of ‘responses’ (handwritten digit images) to different ‘stimuli’ (numbers

4By organization we mean either a clustered structure, where a group of cells are strongly explained
by that factor, or a continuous one, where the factor contribution varies gradually across the population
(resembling a continuous function). The use of a manifold algorithm in Chapter 4 is particularly suitable for
inferring the underlying structure regardless of its kind.
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Figure 3.5: Determining neural matrix rank and optimal number of tensor factors for the
random-RF LN model. Variances were computed as the mean across 25 repetitions of the
NTF algorithm using a random initial guess. A: neural matrices with different number of
factors chosen. (Refer to text for details.) B: The evolution of variances for increasing F
can be analyzed to infer the rank R of Nλ. Since we have 10 data points (rows of Nλ),
this limits the rank to be at most 10, so there are no new non-zero eigenvalues beyond λ10.
Regardless, the total variance still decreases due to disintegration of the factors. (Compare
with Fig. 3.2-A, for which some of the variance lost by the top PCs goes to the bottom
PCs.) Here it is clear that R = 9. C: Spectra for different values of F ≥ 20. Note how
the top 9 PVs decrease with increasing F . This is analogous to Fig. 3.2-B except for the
absence of the right-hand side of the “fulcrum”. D: As in Fig. 3.2-C, the sum for the first
R = 9 variances is used to determine the optimal F for our LN model data set, which
is 20 (confirming our expectation since there are 10 nearly orthogonal RFs and 2 nearly
orthogonal stimuli).
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0–9) by the same subject (writer), in direct analogy with our neuronal data sets, in which
points represent a collection of responses (PSTHs) to different visual stimuli by the same
neuron. Each individual digit image is vectorized so the data tensor still has 3 modes.

Figure 3.6: The WNIST data set. A: Multiple examples of all 10 digits by four different
writers from the NIST’s Special Database 19, partition hsf 0. Some writers have more
similar style than others (e.g., 0003 and 0011 vs. 0006 and 0008). B: Data points (depicted
here as rows) can be formed by selecting one example of each digit from the same writer;
each digit for the same point can be thought of as a ‘response’ to a different ‘stimulus’ by
the same subject, in analogy with our neuronal data sets.

We applied our algorithm to a subset of WNIST including 3 writers only, to ensure
clarity of the results. Examples of factors obtained in this experiment are given in Fig. 3.7.
In Fig. 3.8, we show the plots used for selection of the optimal number of factors and
initialization. In the following chapter, we shall see whether the manifold obtained by
using this choice of factors can “identify” the writers from their samples.
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Figure 3.7: Examples of factors obtained for a few digits using WNIST with three writers
and 5 writing samples per writer. The three factors for the digit 5 clearly separate the
samples into three almost disjoint groups (samples are sorted by writer, separated by dotted
lines). For the digit 0 there is a more variation in the style by the same writers. Digits 7
and 8 require fewer factors to be reconstructed. Note that one of the factors for 7 also
reconstructs the digit 2 to a lesser extent; it also represents a style that is exclusive of the
second writer.

Figure 3.8: Determining the rank for the WNIST data set. A and B illustrate the procedure
used for determining the rank R of the neural matrix, optimal number of tensor factors, F ,
and corresponding best initialization (as in previous examples). Here, although R = 2 is
low, F = 27 is much higher, since each digit appears with possibly many different styles.

40



Chapter 4

Inferring manifolds from data points

• Goal: Representation of neural functionality as a manifold; nearby neurons on
manifold respond similarly;

• Method: Diffusion geometry with kernel constructed from neural factor matrix;
works even when there are abrupt structural changes in density;

• Results: Topology of manifold reveals functional circuitry for artificial exam-
ples; sparsification of the data graph add robustness to the diffusion kernel;
mean flow ratio is proposed as a measure of the global connectivity of the man-
ifold.

4.1 Diffusion maps
Manifold learning algorithms are based on the assumption that the data has an underly-
ing locally low-dimensional geometry embedded in high-dimensional ambient space. In
other words, the data approximately describes a low-dimensional manifold, i.e. the neigh-
borhood around every data point resembles Euclidean space. Their goal is to find this
underlying manifold and a parametrization for it in terms of intrinsic coordinates over the
manifold. (We will discuss the validity of this assumption by means of examples, as well
as propose adaptations to deal with non-ideal cases.)

In contrast with tensor factorization, which is a linear method (factors are linearly
combined to approximate the original tensor), most manifold learning algorithms are non-
linear. In the case of diffusion maps [83, 31], which we will use in this work, the non-
linearity is introduced by the similarity kernel, introduced to describe local data affinities.

4.1.1 The algorithm

In short, the diffusion maps algorithm consists of the following steps [31]:
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1. Given N data points x1, . . . ,xN ∈ Rl, choose a symmetric, semi-positive similarity
kernel k : Rl × Rl → R and compute its value for each pair of points;

2. Using kernel values as edge weights, define an undirected weighted graphG = (V,E)

with each point as vertex and with weighted adjacency matrix W ∈ RN×N such that
Wij = k(xi,xj).

3. Build a row-stochastic matrix, P , by dividing each i-th row of W by the degree of
xi (row sums of W ):

P = D−1W, (4.1)

where is the diagonal matrix Dii =
∑N

j Wij . The leading eigenvectors of P may be
used as a basis for a low dimensional representation of the data [12].

4. Compute the eigendecomposition of P , which has a complete set of eigenvectors ψi
and eigenvalues 1 = λ0 ≥ |λ1| ≥ · · · ≥ |λN−1| ≥ 0. 1; The first eigenvector, ψ0,
is the all-ones vector, 1 (since the row sums of P are all equal to 1; so P1 = 1).
The remaining dominant eigenvectors ψ1, . . . , ψk for some k � N are then used to
define diffusion coordinates that will give a low-dimensional embedding of the data.

5. By scaling each eigenvector by its corresponding eigenvalue raised to a power t ≥ 0

representing diffusion time, we have the pleasant result that the Euclidean distance
between xi and xj) in these new coordinates is equivalent to diffusion distance in
the data graph2. The latter is defined as the length of the vector computed as the
difference between the probability distributions after one step in two random walks:
one starting from xi and another starting from xj , weighted by their empirical den-
sities (or degrees, as define above)[31]. This is a notion of distance that reflects the
local connectivity in the data graph, i.e., it will be small when there is a large number
of short paths connecting xi to xj , and is key to the motivation of using diffusion
maps in the first place. The data is therefore mapped as:

xi 7→
(
λt1ψ1(i), λt2ψ2(i), · · · , λtkψk(i)

)
. (4.2)

One can either fix t as 1 or observe the evolution of the random walk/diffusion
process through time (since |λi| ≤ 1∀i they will either stay at 1 or approach 0 as
time increases, i.e. reach equilibrium).

1Although P is not symmetric, one can conjugate it by D− 1
2 to produce a symmetric matrix Ps =

D
1
2PD− 1

2 = D− 1
2WD− 1

2 which is similar to P (in the linear algebra sense) (it must be symmetric since
both D− 1

2 and W are symmetric); therefore it has real eigenvectors and eigenvalues. If it is diagonalized
as Ps = ΩΛΩT , P can now be expressed as P = D− 1

2 ΩΛΩTD
1
2 . Then, by letting Ψ = D− 1

2 Ω and Φ =
D

1
2 Ω, we have P = ΨΛΦT , where ΦT Ψ = I . Thus, P = ΨΛΨ−1 = ΨΛΦT is the eigendecomposition for

P .
2Up to an accuracy δ which is a function of the number k of eigenvectors chosen [31].
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Note that the eigendecomposition of P is inherently associated with that of the normal-
ized graph Laplacian, which can be negatively defined (following [32]) as

L = D−1W − I = P − I, (4.3)

where I is the identity. Since (P − I)x = Px− x = λx− x = (λ− 1)x, L has the same
eigenvectors and its eigenvalues are one unit less than those of P .

The use of diffusion maps is justified based on the following main advantages over
other manifold methods:

• Diffusion distances take into account bottlenecks in the graph: points that are con-
nected by few disjoint paths will end up very distant from each other (even when
they have a short path between them, i.e. small geodesic distance);

• The geometric features of the cloud of points can be exaggerated, enhancing the di-
mensionality reduction (e.g., see dumbbell example from [83]). This happens espe-
cially when the data is clustered or when there is a change in the local dimensionality
of the manifold (see examples in section 4.4 below).

• Diffusion distance is naturally more robust to sampling and noise if compared to
geodesic distance (which is used in other manifold methods, e.g. [134]). Addition-
ally, one can choose an anisotropic modification of the kernel to deal with nonuni-
form densities (see section 4.2.1 below).

• Theoretical convergence guarantees: it can be shown [83] that if the data points are
independently and uniformly distributed over a manifoldM, we have convergence
of the discrete graph Laplacian L from eq. 4.3 to the continuous Laplace-Beltrami
operator3, in the limit of sample size N →∞ and ε→ 0. Put differently, the graph
Laplacian, under ideal conditions, numerically approximates a continuous diffusion
operator on the underlying manifold, by using only a finite subset of its points [32].

As possible drawbacks of this method, we can mention: the manifold assumption
might not be valid, and although that is not a problem, sometimes this can give non-
ideal results, as in the case when the data is a single Gaussian cluster (see below). Also,
although an appropriate kernel bandwidth can be many times easy to pick, it is still a free
parameter and in some cases the resulting embedding is highly sensitive to its choice.

3The Laplace-Beltrami is a generalization of the Laplacian when applied to a smooth function over a
Riemannian manifold [105] (for n-dimensional Euclidean space, it coincides with the standard Laplacian);
it appears in the solution to diverse physical problems, in particular those involving diffusion processes,
hence the name diffusion maps. By computing the eigenvectors of L, we approximate eigenfunctions of L
that represent states of diffusion stability.
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4.2 Similarity kernel
A symmetric, semi-positive similarity kernel is used to essentially decide the neighbor-
hood of each data point based on the original Euclidean distances between them. For each
pair of data points xi,xj ∈ Rl, it returns a number between 0 and 1 which determines how
close, or strongly connected, they are. Typically a (rotation-invariant) Gaussian kernel is
used:

kε (xi,xj) = exp(−‖xi − xj‖2/ε), (4.4)

where ‖ · ‖ is the Euclidean norm of Rl. This gives a continuous similarity scale from 1
(when xi and xj are exactly the same point) down to some predetermined cutoff below
which the kernel is considered to be zero (usually due to numerical precision). Since this
kernel is symmetric, an undirected weighted graph G = (V,E) can be immediately con-
structed by identifying each data point with a vertex and using similarities as edge weights.
Notice how the Gaussian’s scale, or bandwidth, parameter, ε, effectively determines each
point’s neighbors and the strength of their connections in the graph.

Note that with this type of kernel, the actual input to the diffusion maps algorithm is
a distance matrix. But Euclidean distance computed in our raw multi-dimensional data
is not adequate. So, as seen in chapter 2, NTF creates an intermediary representation of
the neural data as a matrix for which Euclidean distance (with metric tensor) is actually
meaningful. NTF acts, thus, as a distance kernel prior to the diffusion kernel.

4.2.1 Correcting for nonuniform density with anisotropic diffusion

Local variations in the density of the data points may appear due to several reason: nonuni-
form data collection, sampling noise or systematic bias towards parts of the data, or, even
if perfectly homogeneous sampling is achieved, the inherent characteristics of the phe-
nomenon being sampled may produce nonuniform accumulation of data (e.g. a uniform
sampling over time of a speed-varying parametric spatial curve).

Gaussian-based diffusion propagation will capture not only the data geometry, but also
its distribution, or density [83]. This may be desired in some cases, but in many applica-
tions one would like the algorithm to be able to uncover the same underlying structure (i.e.
‘manifold’) regardless of the distribution of the data points. That is indeed our case when
studying neuronal activity sampled with multi-electrode arrays.

The degree (eq. 4.1) of each point, d (xi), can provide a good approximation of the true
data density [31]. When this density is nonuniform, L from eq. 4.3 actually approximates
the Fokker-Planck operator[31]. In order to separate the geometry from the distribution of
points, one must use a modified kernel:

k̃ε (xi,xj) =
kε (xi,xj)

d(xi)d(xj)
. (4.5)
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The algorithm follows in much the same way as in section 4.1.1 by making W̃ij =

k̃ε (xi,xj) and D̃ii =
∑N

j W̃ij. Once can then proceed by computing the transition matrix
P̃ , and its corresponding Laplacian, L̃, which in the limit of large sample and small scales
will approximate the Laplace-Beltrami operator (solely defined through geometry) [83].

Examples of density normalization using the anisotropic kernel in comparison with the
original Gaussian kernel are given in Fig. 4.1. Non-uniformity in density can be present in
different ways, as the two cases illustrate.

Figure 4.1: Comparison between using diffusion maps with the original kernel vs. the
anisotropic version (normalized for density correction) on two toy data sets: one with
discrete changes in density (top) and another with random changes in density (bottom).
Top: whereas the embedding using the non-normalized kernel is majorly influenced by the
small asymmetry between the two density transitions in the original data, the normalized
one correctly “inflates”the middle denser section so that those points have comparable
density to those in the lateral sections. Bottom: the square geometry is better preserved
by the anisotropic kernel. Due to the “exaggerating” characteristics of diffusion maps
(pushing apart gaps and bottlenecks), the wide holes in the source data become wider in the
embedding. The anisotropic kernel, on other hand, makes that behavior more constrained
by compensating for imbalances in the degrees of nearby points, giving a more faithful
representation of the original data.

4.2.2 Choosing an appropriate kernel bandwidth

Ideally, we want ε to be just large enough to be able to capture local manifold patches.
There are common heuristics for this value: using the median of all distances (or another
percentile), the mean distance to the k-th nearest neighbor, or the maximal distance from
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a point to its nearest neighbor in the data.
In [83], ε is the smallest non-zero distance to any neighbor, averaged over all data

points:

ε =
1

N

N∑
i=1

min
j:xi 6=xj

‖xi − xj‖2. (4.6)

In [84], an ε is chosen so that each data point is numerically connected to at least one
other point. In [73], the authors define the max-min measure as a multiple of the maximal
minimal distance per sample:

ε = C max
i

min
j:xi 6=xj

‖xi − xj‖2 (4.7)

for some number C ∈ [2, 3].
Other methods for computing an adequate bandwidth [32, 54] are based on inspection

of the curve given by the sum of all weights Wij(ε) against ε in log-log scale (call it Z),
whose slope is proportional to the intrinsic dimension of the data. One looks for a linear
region of Z and chooses an εwithin within that segment. In [54], this is made more precise
by choosing the point of maximum of the gradient of Z, which is many cases should occur
near the center of the linear region. One complication of this approach is that there might
be more than one linear section in Z, or more than one local maximum in dZ

d log ε
, which

imposes additional criteria for making this a truly automated choice.
There are also multi-scale approaches [154, 98] which assign a different bandwidth

to each point. However, one must still use an heuristic when choosing an appropriate ε
for each point. Usually this involves applying one of the above-mentioned heuristics over
a prespecified number of nearest neighbors; but this means having to decide how many
neighbors to consider for each point, which in turn also requires some form of heuristic.
Multi-scale approaches also suffer from the fact that the kernel may no longer be symmet-
ric, so an additional symmetrization step is necessary before computing the random walk
matrix.

A review of these methods is presented in [88] along with guidelines for kernel band-
width selection for different tasks. Still another multi-scale approach is proposed by BGH

In our experiments, we will use eq. 4.6 for computing ε. Its means advantages are sim-
plicity and the fact that the same global . Intuitively, this provides for a more “fair” com-
parison between points throughout, although it is possible that some denser parts might
end up more “compacted” than others. We rely on the anisotropic kernel to correct for that
when the density variation is small.

It is worth mentionig
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4.3 The data graph
In this section we will take a closer look at how the data graph is actually constructed
depending on the kernel’s characteristics.

4.3.1 Which nodes are connected to which

When a Gaussian kernel is used, either all points are connected to all others (albeit possibly
through edges with very small weights), or there is a threshold below which the kernel
value is zero (meaning no connection). Such threshold can be chosen:

• due to numerical precision (i.e. there is a limit to the smallest possible weight that
can be represented by the machine), which is intuitively reasonable since extremely
small weights shouldn’t influence the results, but has the possible drawback that
the resulting connections are not sufficiently selective to capture the true underlying
geometry, especially in cases when the manifold has folds or is highly curved; or

• by adopting some heuristic that directly specifies the presence or absence of a weighted
edge between two data points (e.g. using so-called ε-neighborhoods or n-nearest
neighbors, as in [13]); these can be reasonable or not depending on what is known
in advance about the data set.

Since the latter requires an additional tuning parameter, we will limit our analysis to
the first option, and compare it with our own proposal for deciding on which connections
to keep, based on applying edge sparsification to the original graph.

4.3.2 Graph sparsification preserving shortest paths

The analogy between graphs and electric circuits goes back to Kirchhoff [75]. A graph
can be modeled as a resistor network by treating every edge as a resistor, with a voltage
source connected between a pair of vertices. For an edge (i, j) with weight wij ∈ R>0,
its resistance can be given by 1/wij [26, 10, 127, 129]. Our procedure begins by first
computing resistances from the similarity weights. Due to the Gaussian kernel, these will
grow exponentially as the distance between xi and xj (in the ambient space, Rl) grows.
This attributes, to any path p defined inG, a total length given by the sum of the resistances
in the edges induced by p.

Form a new graph GR = (V,E) using resistances as weights (corresponding to edge
“lengths”). The next step is to compute all shortest paths between all nodes (e.g., using
Dijkstra’s algorithm [42]); then, for every edge (u, v) ∈ E, delete that edge if the shortest
path between nodes u and v contains more than one edge (i.e., is not the direct edge (u, v)

itself). In graph-theoretic terms, the shortest weighted path length between u and v defines
the distance between them, here denoted by dist(u, v).
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Of course, for this to work we must guarantee that the shortest path we find from u to
v will be preserved after all the pruning is finished. This can be easily proved: an edge
(u, v) is deleted only if the shortest weighted path p between u and v contains more than
1 edge. If there is no shorter path, that means p contains a single edge u-v. Then u-v is
not deleted, therefore the shortest path is preserved. On the other hand, suppose p contains
more than one edge. Then, for any edge (i, j) in p, if it is deleted that means there is a
shorter path from i to j. But, then, this implies that there was an even shorter path between
u and v. That cannot be, otherwise p would not be the shortest path between u and v in
the first place. So no edges in shortest paths are ever deleted, or, equivalently, all shortest
paths are preserved, QED.

Since the (graph-theoretic) distances are preserved, the original graph G shares a for-
mal notion of similarity with the sparsified one, G̃: they are said to be 1-distance similar
[10].4 Additionally, G̃ is formally a sparse 1-spanner of G, as defined in [106, 4], and it
has much in common with greedy geometric spanners [6].

Furthermore, in the spectral sparsification scheme from [128], a probability πe of each
edge remaining in the graph is computed in terms of its effective resistance. It can be
easily shown that any edge e that is pruned by our own method will have πe strictly less
than 0.5, which indicates that our pruned edges are likely ’unessential’ in a spectral sense
as well.

Intuitively, the goal of sparsifying is to remove the redundancy provided by the weak
connections while leaving the “essential” structure of the graph unchanged (Fig. 4.4). Nat-
urally, the resulting sparsified graph is computationally more tractable due to its sparser
adjacency matrix. But, most importantly, its resulting manifold is likely to be more ro-
bust to variations in the choice of the bandwidth parameter, ε (Fig. 4.2). This is highly
desirable since it reduces the importance of the exact value set for ε, and indicates that the
sparsified graph better captures the minimal structure, or ‘skeleton’, of the data (while at
the same time having typically many more connections than the bare minimum to ensure
connectedness, which would be a spanning tree).

Once the graph has been sparsified, its edges can reassume the original similarity
weights. Optionally, one may do away with the weights altogether and use discrete edges,
i.e. treat all weights as unity. This is possible because typically the remaining edges
are either the ones with the strongest weights, or the weak ones responsible for making
long-range connections, i.e., traversing “gaps” in the data distribution. Weak edges are
responsible for “pushing” data points apart in the embedding, but this is also achieved
by means of bottlenecks (due to the random-walk-related property of diffusion distances),
which makes the actual weight values unimportant provided there are sufficient data points
to make the bottlenecks sufficiently salient. Therefore, using unit weights may not be pos-
sible in all situations, but when applicable they result in an even stronger robustness to the

4Two graphs G and G̃ with the same vertices are σ-distance similar if distG(i, j)/σ ≤ distG̃(i, j) ≤
σdistG(i, j).
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Figure 4.2: Comparison between computing (anisotropic) diffusion maps using the orig-
inal data graph (G), the sparsified graph (G̃), and the sparsified graph using unit weights
(G̃1) for the curved square plane data set. Different rows represent using different scales of
the global bandwidth parameter ε obtained using eq. 4.6 for a Gaussian kernel. Sparse data
graphs remain stable over a larger range of ε. E.g, in the first row, note how the manifold
from G̃1 is not affected by the curved center, whereas those from both G and G̃, despite
the anisotropic correction. When using 6ε as bandwidth parameter, the standard graph G
fails to yield a square, while both G̃) and G̃1 remain largely unaffected.

choice of ε. The final step is to apply the anisotropic normalization for density correction.
In effect, the entire procedure can be treated as defining a new sparse, density-invariant
kernel. We compare the three options (no sparsification, sparsification preserving original
weight, and sparsification using unit weights) in Figs. 4.2,4.4.
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Figure 4.3: Comparison between computing (anisotropic) diffusion maps using the orig-
inal data graph (G), the sparsified graph (G̃), and the sparsified graph using unit weights
(G̃1) for a noisy version of the curved plane from Fig. 4.2. Roughly the same observations
apply, showing that the higher stability of sparse also applies under presence of noise.

4.4 Examples
We can now complete our analysis of the simulation examples from section 1.3 with the
computation of their corresponding manifolds. In the previous chapter, we established the
construction of their corresponding data matrices. Using the metric distance formula from
eq. 3.11 and the global ε from eq. 4.6, the Gaussian kernel values can be computed and
their data graphs constructed to be used with diffusion maps. Fig. 4.5 shows the resulting
manifold for the ring model, and Fig. 4.6 that for the random LN model.

In Fig. 4.7, we show the resulting embedding for the WNÏST data set introduced in
Chapter 3. In particular, note how each writer’s samples are organized into well-separated
clusters. In order to quantify the quality of the embedding, we computed the Normalized
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Figure 4.4: Graphs for the noisy curved plane data set from Fig. 4.3. First row: edge
thicknesses are proportional to their weights. Note how the curved mid-section results in a
higher connectivity in that region; this is alleviated by sparsification, which identifies most
of those edges as redundant. When using unit weights, the stronger weights in the center
section are treated equally to the weaker ones near the left and right borders. Bottom
row: the same graphs as above, expect drawing edges with equal thickness, illustrating
the dramatic reduction in the number of edges caused by sparsification (most edges in the
top left plot have weights that are too small to be depicted proportionally).

Figure 4.5: The neural manifold recovered for the ring model data set. In accordance with
our expectations, neurons are sorted by orientation preference and continuously arranged
around a ring. Notice that because there are 8 factors, this is reflected in 8 small concen-
trations of density near their centers. The use of the anisotropic kernel corrects for that
non-uniformity and yields a perfect circular ring.
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Figure 4.6: Embeddings for our random LN model. Top: Embedding obtained when using
one neuron per type (N=10): the “manifold” is completely disconnected since all neurons
are equally dissimilar, as shown by its similarity matrix (right). Each color represents a
different neuron/RF. Bottom: If the experiment is repeated using two neurons for each
RF type, we now have pairs of points clustered together (one pair for each type). The
similarity matrix shows that every point is similar to another point shifted by 10 positions.

Mutual Information (NMI) score [143] between the true writer labels and the results of
performing hierarchical clustering in diffusion coordinates for different choices of F and
initializations (Fig. 4.7-B). This is compared with running diffusion maps directly on the
matricized tensor, i.e. with the 10 digits in each sample concatenated into a single vector:
the tensor approach gives a perfect match, while the matrix approach gives 21% only.

This result is empirical confirmation that applying diffusion maps directly on the con-
catenated data from multiple sources (or modes) may not be sufficient to provide a good
organization. Firstly, such approach increases the original dimensionality of the data. Fur-
thermore, computing distances using the combined vector will give the same weighting to
all vector entries regardless of the mode they actually represent. This is undesirable since
different sources might produce vectors with quite distinct properties, such as dimension-
ality or sparseness of its entries.

In [73], multiple manifolds are generated, one for each source of input (or stimulus),
and their corresponding coordinates for each data point concatenated. The assumption
is that the multiple input sources are related to the same phenomenon, so all manifolds
should exhibit related coordinates, which is not the case in our targeted application (each
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Figure 4.7: Embedding results for WNIST. A: Diffusion map embedding of the writing
samples, colored by writer identity. The 3 writers are well separated. B: Normalized Mu-
tual Information (NMI) scores (representing similarity, see text) between the true writer la-
bels and a hierarchical clustering assignment in diffusion coordinates for different choices
of F and initializations (mean value given by continuous curve). Note how the optimal F
coincides with the plateau of high accuracy. For comparison we also plot the NMI values
obtained using the optimal F and initialization found in B (1.0, represented by a star) and
by running diffusion maps directly on the matricized tensor, i.e. all 10 digits concatenated
into a single vector (0.21).

stimulus can drive a specific activity configuration over the neuronal population, resulting
in highly different individual manifolds). We would like to produce a unified manifold
with its diffusion coordinates describing the effect of all stimuli combined, which justifies
the use of our approach.

4.5 Quantifying manifold “continuity”
It is highly desirable to have a means of comparing different manifold embeddings in some
objective way. As will become clear after we present our biological results in Chapter 6,
of particular interest is a measure to quantify how “clustered” a embedding is, or, from the
opposite perspective, how “uniformly continuous” its manifold is.

One way to characterize this is the following: If one starts from a particular node in the
data graph, how “easy” will it be to visit other nodes, considering that strong connections
are easily traversed but weak ones required more work to be crossed? Intuitively, even if
two nodes i and j are not directly connected by a strong edge, but have common neighbors
with strong connections, then it is still easy to move from i to j. This is basically the same
notion that motivated diffusion distances, and can be well expressed by the effective con-
ductance between i and j, i.e. the inverse of the traditional concept of effective resistance
that is applied to electrical networks. Again, we will exploit the duality between manifolds
and their corresponding networks to relate graph-theoretic properties back to the manifold
topology.
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4.5.1 Effective resistances

The effective resistance Rab between two vertices a and b in an electrical network is the
resistance of the entire network when we treat it as one complex resistor (i.e., if we reduce
the rest of the network to a single edge) [127]. Consider a graph G = (V,E). For any two
vertices, u and v, that are connected by an edge, the effective resistance can be calculated
in several ways [130]: (1) Using transformations of the corresponding electrical circuit
(including the so-called star-mesh transformations); (2) Injecting unit current into the ver-
tex a and taking the same current out from the vertex b. The effective resistance is then
equal to the difference of potentials in a and b; and (3) Through the spectral decomposition
of the corresponding graph Laplacian, L. In particular, it can be shown that the effective
resistances Reff

e for all edges e ∈ E can be computed as the diagonal entries in the matrix

R = BL+BT , (4.8)

where L+ is the pseudoinverse of L and Bm×n is the signed edge-vertex incidence matrix
[128]. This means there is a straightforward way of computing effective resistances in G,
and by consequence, effective conductances.

4.5.2 Mean flow ratio

The maximum flow problem is a classic problem in graph theory and was originally for-
mulated as a means to optimize railway traffic between cities [119]. It applies to multitude
of scenarios that can be represented as a weighted graph where each edge u − v has a
‘capacity’ (its weight) representing how much flow can be transported by that edge. Sev-
eral algorithms exist for solving it with varying time complexities. Of course, it directly
relates to our problem posed above, since we can treat edge conductance as a capacity,
i.e. a measure of the ease with which an edge can be traversed. Since we use effective
conductances, though, nodes in the original kernel graph that were connected by a weak
edge but that had several disjoint paths connecting them will now be connected by a strong
edge.

Therefore, by creating a new graph GC with effective conductances as edge weights,
the max flow between two any two nodes u and v in GC can tell us whether there is a path
where all edges are strong (high effective conductance, meaning all points along this path
were highly connected in the original graph G) or whether there are any big gaps along
the way (case in which the max flow is small).

For an individual node i, the ratio ρi between its average max flow to all nodes and the
average max flow to the nodes adjacent to i is a measure of “connected” i is to all nodes
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compared to his proximity to its immediate neighbors:

ρi =

∑N
j=1 maxflow(i, j)∑

k,(i,k)∈E maxflow(i, k)
(4.9)

where E is the set of edges in GC and j 6= i. We call this quantity the flow ratio of i. Gaps
in any part of the manifold will cause the numerator to be small, so ρi is also small.

Finally, order to have a global conductance measure of how well-connected, or “con-
tinuous” the manifold of G is, we propose the mean flow ratio quantity, φG, defined as the
average flow ratio over all nodes in GC :

φG =
N∑
i=1

ρi. (4.10)

The entire procedure is summarized as follows:

1. Compute the data graphG using the anisotropic kernel (choosing εwith, e.g., eq. 4.6);

2. Compute edge resistancesRe = 1/We (and, optionally, sparsifyG as in section 4.3.2);

3. Compute effective conductances as 1/Reff
e , with Reff

e obtained from eq. 4.8;

4. Define new weighted graph GC where the weight for edge e = (u, v) is the effective
conductance between u and v.

5. Compute the max flow between all pairs of nodes.

6. For every node i, compute its flow ratio ρi as in eq. 4.9.

7. The graph mean flow ratio φG is the mean flow ratio over all nodes (eq. 4.10).

Of course, sparsifying the graph makes the max flow computations considerably more
efficient, while giving very similar results.

This quantity is high when, on average, the flow from a node to other nodes in the
network is low (e.g., due to bottlenecks or big gaps, or even disconnected components)
compared to the flow to its adjacent neighbors. When the flow is nearly the same between
any two nodes (e.g. in a clique or on a grid), the quantity is close to 1. Also note that,
because the max flow to neighbors constrains the flow to other nodes, ρi ≤ 1.

Since we compute a ratio, the actual weight values are not important: only their relative
strengths. E.g. a path graph with constant edge weights will have φG = 1 regardless of
their actual values; but a graph with two disconnected (or nearly disconnected) paths will
have a smaller φG, since the numerator of ρi will decrease (in this example, if both paths
have a similar number of nodes, we have the pleasant result that φG ≈ 0.5, since the flow
to half the nodes is nearly zero for every node i).
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Another pleasant property is that φG is little affected by ‘outliers’, i.e. isolated data
points that are far from all others. Assuming each node is connected to at least one other
point (otherwise it is easy to identify the outliers), their ρi should be close to 1 since they
will be weakly connected to all nodes, which will not tend to affect the global mean φG
give that outliers by definition are very few. Importantly, this is in stark contrast with
the graph-theoretic notions of conductance and algebraic connectivity, which are highly
affected by the presence of outliers.

Below, we show examples of the mean flow ratio applied to clustered vs. non-clustered
toy data sets.

Figure 4.8: Mean flow ratio (φG) values for toy data sets. Middle column shows data
graph with unweighted edges and nodes colored by their individual flow ratios (ρi). No
sparsification was used. A: two isolated clusters have φG = 0.47 ≈ 1/2. B: three isolated
clusters have φG = 0.32 ≈ 1/3. C: a curved, noisy plane gives φG = 0.90 ≈ 1.
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Part II

Results in neuroscience
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Chapter 5

Flow stimuli: generating an appropriate
stimulus ensemble

• Goal: develop stimulus ensemble rich enough to engage much of the mouse’s
visual system through V1.

• Method: combining novel flow stimuli with standard laboratory stimuli

• Results: developed flow stimuli with guaranteed spatial and temporal frequency
support; developed stimulus generator and deployed it in the laboratories of our
collaborators in UCSF and Duke; published results confirming that the awake,
behaving mouse responds in novel ways to the flow stimuli.1

5.1 Why use flows?
The mouse has become a major model for studying vision because of the genetic, imaging,
and molecular tools available [45]. Studies have revealed relationships between macro-
scopic states of the brain and activity in visual cortex (running vs. stationary [102, 50],
pupil size and activity [109, 96], and visual interest (e.g., [61, 96, 142]). However, a basic
conundrum has arisen: behaviorally, mice are capable of sharp, visually-mediated behav-
iors [107, 56, 19], such as accurate prey capture [66], but when assessed using standard
assays, such as spatial frequency gratings (Fig. 5.1), the mouse appears to have very poor
vision. Although orientation-selectivity has been found [101], receptive fields are large
(typically ∼25 degrees2) when estimated by spike triggered averaging, and spatial fre-
quency tuning is concentrated below 0.08 cycles/degree (cpd). While this motivates the
use of gratings at 0.04 cpd in experiments, it raises the question: How does the visual
system perform so exquisitely in natural tasks?

We show here that ecologically-relevant stimuli can exercise mouse visual cortex in
novel and manifold ways. While plaids [70, 103] and random-dot kinematograms [43,

1Most of the content of this chapter has been previously published in [44].
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132] are a step beyond gratings, the leap to natural images (e.g., [20]) is more common
(e.g., [48, 114]). However, natural images are difficult to obtain [116], difficult to control
parametrically, and difficult to analyze beyond second-order [124].

For a mouse running through a field, the visual projection is like a ‘waterfall’ flowing
past, with oriented segments moving into and out of occlusion relationships (Fig. 5.1A)[157].
This visual metaphor motivates our stimuli. We approximate such patterns with a class of
visual flows comprised of dots, so they are more natural than drifting gratings but can be
parametrically controlled in their orientation (content and angle), spatial frequency, and
direction of motion. We call them flows because, intuitively, they consist of a field of
particles (either dots or dotted line-segments) dropped into a ‘flowing river’. More for-
mally, each dot is displaced along a vector field in space and time and follows a dynamical
system [1]. When the orientation structure is removed, the flows reduce to random-dot
kinematograms; when the temporal structure is removed, the flows reduce to static Glass
patterns [51]. Thus they are rich in geometry and, for humans, the perception of such
flows differs from strictly aligned patterns [90, 156]. Parametric variations in orientation,
direction, etc., define an ensemble of stimuli.

We here explore activity in mouse V1 in response to the flow ensemble. In many
cases flow stimuli elicit more vigorous responses than drifting gratings, particularly at
high spatial frequencies 3–5 octaves above 0.04 cpd. Some V1 neurons are classical,
resembling feature detectors, while others exhibit a mixed selectivity rarely reported in
early visual cortex. The rich ensemble of selectivities in V1 may equip the mouse to
behave in the natural world.

5.2 Design of flow stimuli
Flow stimuli were designed as variations of Glass patterns [51] in which patterns formed
by n collinear dots move with direction determined by an underlying vector field, or flow
field (see examples of possible flow patterns in Fig. 5.2). If n > 1, the flow element
maintains its orientation orthogonal to its direction of motion. At each presentation, the
initial position of each flow element is a normally-distributed random variable with a given
standard deviation and whose mean is one of the evenly-spaced positions on the screen
(determined by the chosen stimulus spacing).

The flow field is created by partitioning the screen into a grid of square tiles, each being
assigned a unit vector in R2 whose direction is given by a normally-distributed random
variable. Since the dots move like a flock, we exploit algorithms from computer graphics
to make their motion more naturalistic [110, 111] as well as to avoid overlapping [112].
As a result, the flow elements can make successive changes in direction as they drift across
the flow field by following a smooth and continuous trajectory, without abrupt changes in
direction. They will also wrap around the screen boundaries to preserve a constant number
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Figure 5.1: Introducing flow stimuli. A, Ecological motivation for using flow stimuli:
modifying an image of a grassy patch to progressively emphasize higher contrasts con-
verges to a binary pattern of random, oriented line segments. B, We abstract this to flow
fields consisting of dotted segments of different lengths, emphasizing two geometries (ori-
ented [3 or 4 aligned dots] or non-oriented [single dots]), two contrast polarities (positive
or negative), and various sizes. C, Flows are inconsistent with classical filtering views of
V1. A Gabor receptive field at 0.04 cpd superimposed onto the 3-dot flow whose energy
peaks at 0.24 cpd (top right example in B), for comparison. D, The 1-D discrete Fourier
transforms (single-sided) of the flows utilized in our experiments (peaks at 0.15, 0.24, 0.7,
1.0, 1.25, and 1.6 cpd) have power well beyond 0.04 cpd (dashed curve), which is the spa-
tial frequency previously reported as optimal for cells in mouse V1 (cf. inset, from [101]).
To compare stimuli, each spectrum is normalized by the power at the peak frequency.
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Figure 5.2: Examples of possible flow patterns. Top: positive flows with single- (left)
and 3-dot (right) elements. Middle: two examples of negative flows; dot sizes determine
the stimulus spatial frequency. Bottom: another possibility is to have flow patterns with
non-uniform distribution of contrast, e.g., following natural scene statistics (not used in
these experiments).

of patterns being shown at all times.

5.2.1 Materials and methods

(For a complete description of the experimental methods used, please refer to [44].

Extracellular recordings in awake mice

Alert mice were studied while on a spherical treadmill modified from the design described
by [102] that permits free locomotion. Extracellular microelectrode recordings were per-
formed as modified from [102]. The electrode is placed at an angle of 30◦–45◦to the
cortical surface and inserted to a depth of 500–1000 µm below the cortical surface. For
each animal, the electrode is inserted no more than twice.
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Visual stimuli

Visual stimuli were presented with gamma-correction correction on a monitor placed 25
cm from the mouse, subtending 60◦–75◦of visual space. For current source density (CSD)
analysis, we present a contrast-reversing square checkerboard (0.04 cpd, square-wave re-
versing at 1 Hz). For localization of receptive fields by spike-triggered averaging we
presented spatiotemporal band-limited noise patterns, as in [101].

To characterize neural responses with single-unit recordings, we presented interleaved
drifting square-wave grating stimuli and flow stimuli moving in 8 directions at a temporal
frequency of 4 cycle/s over two sets of spatial frequencies: the first included 0.04, 0.15,
and 0.24 cpd (100% contrast, trial duration 1.5 s); the second included 0.04, 0.7, 1.0, 1.25,
and 1.6 cpd (50% contrast, trial duration 1.0 s). All stimuli variations were repeated 20–25
times according to a randomized sequence. Contrast and trial duration were maintained
the same for all stimuli used in the same experiment.

We used flow stimuli with two different geometries. The first are non-oriented single-
dot flows, and the other are oriented flow elements with either 3 or 4 dots. Both oriented
and non-oriented variations had one version with positive contrast (white dots against a
black or gray background), and another with negative contrast (black dots against a white
or gray background). Dominant spatial frequency contents of 0.15 cpd, 0.24 cpd, 0.7 cpd,
1.0 cpd, 1.25 cpd, and 1.6 cpd were used, corresponding to the following dot diameters,
in degrees of visual angle (dot spacings, in multiples of diameter): 2.1 (2), 1.5 (2), 1.4 (1),
1.0 (1), 0.75 (1), 0.5 (1) for single dots; for n dots, diameter is divided by

√
n so as to

preserve total area. For all flow stimuli, both parallel and jittered versions (0 and 0.1 rad
std. dev. of flow field direction distribution, respectively) were used, with no detectable
difference in the results; flow field tile side: 5 times dot diameter; initial positions on the
lattice had std. dev. equal to 10% of dot spacing.

In the first cohort, the luminance of the screen displayed during the interstimulus period
was set to the global average luminance of the stimulus of the upcoming trial—this allows
one to control for responses due to the global change in the screen luminance only, and not
to the actual moving stimuli. Such a strategy, however, does not completely eliminate the
effect locally, given that there will still be a change in the luminance of the background as
soon as the trial starts. Thus, in order to control for possible responses due to the change
in background luminance, we in the second cohort a constant gray background was used
both in the flow trials and in the interstimuli intervals. For a similar reason, the diameter
of each dot in a multi-dotted flow element was chosen such that the total area occupied by
the element was the same as that of the single-dotted version of the stimulus with same
spatial frequency. In any event, the use of statistical tools to assess significant responses,
the presence of a large proportion of cells being well-tuned to direction or orientation, and
visual inspection of the actual individual PSTHs obtained are strong confirmation that our
results cannot be trivially explained by screen luminance effects.
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Single-neuron analysis

Single units are identified using MountainSort [27], which runs in approximately 2× real
time for fully automated spike sorting of data from our 128-site electrodes. Manual cura-
tion after a run on one hour of data takes an additional half hour, typically yielding 150
isolated single units.

Cortical layer

The cortical layer containing each isolated unit is determined using current source-density
(CSD) analysis on data collected during presentations of contrast-reversing square checker-
board. Extracellular voltages sampled at 25 kHz are bandpass filtered between 1 and 300
Hz to yield local field potentials and then averaged across all 1 s positive-phase presen-
tations of the checkerboard. CSD for each channel is computed as the second spatial
derivative of the average LFP traces along the length of the silicon probe. The borders
between layers 2/3–4, 4–5, and 5–6 are identified by spatiotemporal patterns of sinks and
sources in the CSD plot ([? ]; for example see Fig. 1C of [37]).

Data analysis

Isolated single units that stopped firing altogether after a certain time of the recording or
that only started firing after some time were assumed to have moved away or toward the
multielectrode array, respectively; therefore the trials with zero spikes at the beginning and
end of recordings were discarded.

An orientation selectivity index (OSI) was defined as: (Rpref−Rortho)/(Rpref +Rortho),
where Rpref = (Rpeak dir + Rpeak dir+π) is the response (average firing rate) for the pre-
ferred orientation and Rortho = (Rortho dir + Rortho dir+π) is the response for the orienta-
tion orthogonal to the preferred one. A direction selectivity index (DSI) was defined as:
(Rpref − Rnull)/(Rpref + Rnull), where Rpref is the response (average firing rate) for the
preferred orientation and Rnull is the response for the null orientation (π rad apart from
the preferred one). A stimulus selectivity index (SSI) was defined for a pair of stimuli as
(Rmax − Rmin)/(Rmax), where Rmax (Rmin) is the average peak firing rate of the stimulus
with higher (lower) firing rate in the pair.

PSTHs were plotted using a Gaussian interpolation kernel. Bin sizes were chosen
following [? ].

Power spectra of the stimuli were computed with a fast Fourier transform (FFT) al-
gorithm. Due to the stochasticity of the flow stimuli, the spectra are averages over 40
different trials. Data were not treated with any window.
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5.3 Results

5.3.1 Analysis of stimulus selectivity in V1

Cells in V1 have diverse preferred stimuli

We developed an ensemble of stimuli including drifting gratings, single dot flows (random
dot kinematograms), and oriented flows where each element consists of 3 or 4 dots (see
Methods). The stimuli had either positive contrast (bright dots) or negative contrast (dark
dots). Activity is plotted as an array of peristimulus time histograms (PSTHs) and tuning
curves for each unit, to facilitate a quick assessment of the different “dimensions” to a
cell’s response. Experiments were conducted in two cohorts, the first with grating stimuli
at 0.04 cpd and both grating and flow stimuli at 0.15 and 0.24 cpd, and the second cohort
with grating stimuli at 0.04 cpd and both grating and flow stimuli at 0.7, 1.0, 1.25, and 1.6
cpd. All stimuli in both cohorts had a fixed temporal frequency of 4 Hz.

We begin with example cells from the cohort 1. The first one (Fig. 5.3A) has the re-
sponse profile one would expect for a simple cell in V1. It responds almost exclusively
to low-frequency gratings; the PSTHs for high-frequency gratings and for flows (both one
dot and three-dot elements) remain virtually at baseline. Its spike triggered average de-
picts a classical receptive field, consistent with the frequency response, and it is well tuned
for orientation. But such cells were relatively rare in our experiments (discussed below).
Another example (Fig. 5.3B) exhibits a weak response to gratings and a stronger response
to flows. The STA, which would predict a strong response to low-frequency gratings,
completely fails to predict this response profile. Finally, many cells are multi-dimensional
(Fig. 5.3C): they respond well to several stimuli from the ensemble, including gratings and
flows at multiple spatial frequencies. Note the diversity in the temporal response profile:
a periodic (often interpreted as linear) response to gratings at low spatial frequency; a sus-
tained (interpreted as nonlinear) response to gratings at higher frequencies; and a transient
burst of activity to positive, oriented flows. It would be inappropriate to label this cell a
classical feature detector. The STA again does not predict the response profile, and the
PSTHs reveal different tuning widths, different first-spike latencies, as well as linear vs.
nonlinear and transient vs. sustained responses.

5.3.2 Responses to optimal flows span a wide range of spatial frequen-
cies

To quantify this diversity at the population level, we relaxed the notion of a unique pre-
ferred stimulus for a cell to allow for multiple possible preferences, according to the fol-
lowing definitions. While this leads to a crude classification of cell types, we stress that it
is merely a set of labels for discussion; the underlying complexity remains in the PSTHs.
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An individual stimulus is significant for a particular cell if the average firing rate
for that stimulus is significantly higher than that for its preceding interstimulus interval
(Mann-Whitney test). A cell prefers a stimulus class (e.g., flows or gratings) if at least
one variation of that class (spatial frequency, geometry, or contrast polarity) is significant
and has average peak firing rate significantly higher than the peak firing rates of all signif-
icant variations of the other class (Kruskal-Wallis rank-sum test, Conover-Iman post-hoc,
Bonferroni correction, p < 0.05). When there is no preferred stimulus class but there are
significant stimuli in both classes, we classify the cell as multi-class, or simply MULTI.
Thus the preferred stimulus class, or type of a cell, is one of GRATING, FLOW, MULTI,
NON-SELECTIVE. By this classification, the cell in Fig. 5.3A would be classified as a
GRATING cell; Fig. 5.3B would be a FLOW cell; and Fig. 5.3C would be a MULTI cell.

Once each cell’s type, or preferred stimulus class, has been determined, its preferred
spatial frequency can be defined as the one with highest average firing rate among all
significant variations of the preferred class (or classes, when cells are labeled MULTI).

We plot the proportion of preferred types at each preferred frequency in Fig. 5.3D; the
two separate plots denote units from experimental cohort 1 (0.04–0.24 cpd, n = 357 cells,
3 animals) and cohort 2 (0.04–1.6 cpd, n = 256 cells, 3 animals), respectively. Note the
predominance of GRATINGS among cells at the lowest frequency, replicating the inset in
Fig. 5.1D, and the predominance of FLOW and MULTI types at the higher frequencies.

We now examine the distribution of preferred types in two different ways, either in-
cluding or not including the responses to low-frequency gratings. This is necessary, since
the performance measure is a simple spike statistic that is easily dominated by the gratings.
First, when low-frequency gratings are included among the stimuli, by the above defini-
tions 45% of the cells respond equally well; i.e. are in the BOTH type; 28% are FLOW cells;
26% prefer GRATINGS; and 29% of the cells were not significantly responsive to any of the
stimuli displayed (see Fig. 5.3E, blue). When low-frequency gratings are not included, so
that the comparison is among flows and gratings at the same spatial frequencies, responses
favoring FLOW (50%) and BOTH (43%) predominate over those to GRATINGS (7%) (see
Fig. 5.3E, red). The difference between these two plots comes from a more detailed anal-
ysis: the cells responding strongly to 0.04 cpd can be divided into roughly two subgroups:
one that has no significant response other than to low-frequency gratings and another that
also responds well to flows (or, in fewer cases, to both flows and high-frequency gratings).
These plots include all cells. A similar distinction obtains when only cells well-tuned to
orientation (OSI > 0.5) or direction (DSI > 0.5) are considered (Fig. 5.3F).

In summary of these first data, among cells with significant preference for flows or
both flows and gratings, responses were distributed across all spatial frequencies explored.
For “classical” cells (those that significantly preferred gratings to flows) there is a clear
preference for 0.04 cpd with a distribution in accordance with [101] (see Fig. 5.1D). Curi-
ously, some cells that are well tuned to low-frequency gratings are also well tuned to flows
with higher spatial frequency, albeit usually with lower firing rates. Nevertheless, many
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Figure 5.3: Variety of responses in V1. A–C, Tuning curves and PSTHs of three example
cells in response to drifting gratings and flows at 0.04, 0.15, and 0.24 cpd in 8 equally-
spaced directions of motion. Time axis in histograms encompasses an entire period of
stimulus presentation (1.5 s). Insets in STAs show, at the same scale, stimuli that produced
the most significant responses. A, Cell responding to low-frequency gratings only. Bin size
34 ms. B, Cell responding preferably to single-dot flows with negative contrast. Bin size
83 ms. C, Cell responding strongly to both oriented (3 dots), positive flows and gratings
(at both high and low spatial frequencies). Bin size 46 ms. D, Distribution of optimal
spatial frequency in terms of proportion of cells significantly responding to at least one
of the stimuli. In the group of experiments using the first set of stimuli (left panel, 0.04–
0.24 cpd, n = 357 cells, 3 animals), the majority of cells fired more strongly for stimuli at
0.15 cpd, followed closely by 0.04 cpd. For the second set of stimuli (right panel, 0.04–
1.6 cpd, n = 256 cells, 3 animals) there was an overwhelming preference for 0.04 cpd,
although more than half the cells had optimal spatial frequency in the range 0.7–1.6 cpd.
(Continues.)
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Figure 5.3: (Continued.) E, Distribution of preferred stimulus among all cells. When
low-frequency gratings (0.04 cpd) are included among the stimuli (left panel), the major-
ity of cells respond equally well to both classes (“Multi”), followed by only flows and
only gratings; 29% of the cells were not significantly responsive (“N.S.”) to any of the
stimuli displayed (n=1026 cells; 10 experiments, 6 animals). When we do not include
low-frequency gratings, thereby limiting the comparison to flows and gratings with sim-
ilar spatial frequencies only, there is a significant preference for flows only and for both
over gratings only. Comparison of the left and right panels reveals that approximately
20% of cells preferred low-frequency gratings. When we recompute stimulus preference
considering only stimuli with comparable spatial frequencies, most cells that preferred
low-frequency gratings now either prefer none of the high-frequency stimuli, or signifi-
cantly prefer flows over high-frequency gratings, given that the fraction that prefers both
remains essentially constant in the two scenarios. Error bars represent s.e.m. F, Distribu-
tion of preferred stimulus among well-tuned cells (i.e., those with OSI ¿ 0.5 or DSI ¿ 0.5),
n=295 cells (left), 241 cells (right); 8 experiments, 4 animals. Here, notice that most of the
cells responding to orientation and/or direction will fire more strongly to low-frequency
gratings; the right panel reveals, however, that the fraction of cells well-tuned to flows is
just as large. And, similarly to E, many of the well-tuned cells preferring 0.04 cpd gratings
prefer flows to gratings of comparable spatial frequency. Error bars represent s.e.m.
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Figure 5.4: Cells remain highly selective at higher spatial frequencies. A, Example of
cell exhibiting a stronger response to oriented, negative flows at 0.7 and 1.0 cpd when
compared to gratings at various spatial frequencies. Bin size 47 ms. B, Overall proportion
of well-tuned cells among cells significantly responsive to each spatial frequency (Mann-
Whitney test, p < 0.05), irrespective of stimulus class. Sample sizes: 0.04 cpd (n = 508),
10 experiments, 6 animals; 0.15 cpd (n = 385), 0.24 cpd (n = 365): 5 experiments, 3
animals; 0.7 cpd (n = 214), 1.0 cpd (n = 214), 1.25 cpd (n = 186), 1.6 cpd (n = 173): 5
experiments, 3 animals.

of these cells have higher firing rates for flows compared to gratings of similar spatial fre-
quency, showing that there is some aspect of the flow stimulus that strongly excites these
cells despite the fact that the flow elements would excite the filter predicted by these cells’
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STAs. Supplemental Materials show plots of responses to the entire stimulus ensemble for
these and other cells.

Cells remain well-tuned at high spatial frequencies

Since higher firing rates do not necessarily imply high orientation- or direction-selectivity,
and since a cell might retain its selectivity at several spatial frequencies (SFs), we inves-
tigated the fraction of well-tuned cells (OSI ¿ 0.5 or DSI ¿ 0.5) across spatial frequencies
regardless of preferred stimulus (Fig. 5.4B). This is an estimate of the probability of a cell
significantly responsive to a certain SF being well-tuned.

There are many cells well-tuned to direction and/or orientation at all SFs. Cells with
high orientation selectivity tend to prefer stimuli in the 0.04–0.24 cpd range. The direction-
selective cells seem to be more uniformly distributed across SFs, with a preference for
intermediate SFs (0.15–0.24 cpd).

Higher stimulus selectivity in superficial and deep layers

To further characterize how the response profile of MULTI cells is distributed across stim-
ulus variations, we extend the concept of selectivity indices such as OSI and DSI (e.g.,
[101]) to compare pairs of stimulus classes. A stimulus selectivity index (SSI) is thus
defined for a pair of classes (e.g., flows vs. gratings, or 1-dot flows vs. 3-dot flows) as
(Rmax − Rmin)/(Rmax), where Rmax (resp., Rmin) is the average peak firing rate (FR) of
the stimulus with higher (resp., lower) FR in the pair. Essentially, it measures the differ-
ence in FR between two stimuli, relative to the one with highest FR. E.g., an SSI of 0.2
means the FR for the least preferred stimulus is 20% lower than that for the preferred one.
When comparing stimulus classes for which there are possibly several stimulus variations
in each class, we take the variation that elicited the highest response in each one. Note
that the SSI for a cell population assesses how well those cells’ responses can be used to
differentiate between two stimuli, regardless of which one is the preferred one.

Cells responsive to both flows and high-frequency gratings were found in all cortical
layers. Cells in layer 2/3 had significantly higher values of SSI than all other layers for
differentiating flows from gratings (p < 10-3, p = 10-6, and p = 10-4 for layers 4, 5, and 6,
respectively), while cells in layer 5 had significantly lower SSI than layers 2/3 (p < 10-4)
and 6 (p < 0.05) when differentiating between flows with opposite contrast polarities, and
lower than layer 2/3 (p < 0.005) when differentiating oriented from non-oriented flows
(Fig. 5.5). The same trends were found when only broad-spiking cells (putative excitatory,
see [101]) were considered. Thus, speculatively, cells in the superficial layers could have
higher selectivity, while cells in layer 5 could be more invariant to geometry, length, and
contrast. This may be related to [101], in which it was reported that layer 5 cells were
significantly less linear than cells in other layers.
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Figure 5.5: Cells in different layers have distinct selectivity toward different stimulus
classes, as measured by a stimulus selectivity index (SSI), which indicates the relative
preference for either of two stimulus classes, in terms of firing rate. E.g., an SSI of 0.41 in
layer 2/3 for gratings vs. flows means that cells in that layer have an average 41% differ-
ence in FR between their peak responses to flows and to gratings (regardless of which one
is higher). Cells in layer 2/3 had significantly higher SSI than all other layers when it came
to differentiating between flows and gratings (*, p < 10-3, p = 10-6, and p = 10-4 for layers
4, 5, and 6, respectively). On the other hand, cells in layer 5 had significantly lower SSI
than layers 2/3 (**, p < 10-4) and 6 (p < 0.05) when differentiating between flows with
opposite contrast polarities, and lower than layer 2/3 (***, p< 0.005) when differentiating
between oriented and non-oriented flows (Fig. 5.5). Error bars represent s.e.m.

Preference between different variations of flow stimuli goes beyond differences in
spatial frequency

Among cells that responded significantly to flows, we also compared the average propor-
tion of cells that significantly preferred oriented (3 dots) vs. non-oriented flow patterns
(single dots) (Fig. 5.6A). Analysis of the entire population across different experiments
does not reveal any particular preference, with the vast majority responding to both ge-
ometries. However, if analysis is restricted to those cells well-tuned to direction and/or
orientation, the preference for a specific flow geometry—be it oriented or non-oriented—
increases markedly. In particular, there is an overall preference for the oriented patterns.

Fig. 5.6B shows that only a minority of the cells responding to flows prefer negative
contrast (15%, on average). The vast majority prefer either positive contrast or respond
significantly to both contrast polarities. This difference in preference disappears among
cells that are well-tuned to direction and/or orientation.
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Figure 5.6: Preference over flow stimuli variations. Percentages refer to the population
of cells that had significant response to at least one flow variation. All cells: n = 667, 10
experiments, 6 animals; well-tuned cells: n = 187, 8 experiments, 4 animals (applies to
panels A and B). Error bars represent s.e.m. (*, p < 0.001). A, Flow geometry preference.
Among all cells responding significantly to flows, most showed no significant preference
for either type. Among well-tuned cells, there is a significant preference for oriented
flows over non-oriented flows. B, Flow contrast polarity preference. Among all cells
significantly responding to flows, positive polarity was preferred. The population of well-
tuned cells showed no overall preference for contrast polarity.
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Chapter 6

Network architectures for the visual
system

• Goal: Learn manifolds for the mouse retina and primary visual cortex using
stimulus ensemble from Chapter 5; compare results with manifolds obtained
for deep convolutions networks (DCNs) using “stimuli” from Imagenet [40].

• Method: apply algorithm from Part I. Apply conductance measure to assess
degree of ‘clustering.’

• Results:

1. Retina: organization of retinal ganglion cell types confirms techniques;
reveals a clustered, or ‘discontinuous’ manifold;

2. Cortex: organization of cortical cell types confirms techniques; reveals a
more continuous manifold, indicating feedback circuitry;

3. DCNs: although ‘deep nets’ are widely used as models of visual cortex
and as cognitive theories, our manifolds suggest they are more like the
retinas than like the cortex.

6.1 Real-world examples
Now we apply the algorithm developed in the first few chapters to biological data recorded
from mouse retina and primary visual cortex.

Representing neural responses as PSTHs

Neural responses in which (at least 10) individual trials are combined into a peristimulus
time histogram (PSTH) to form, a 2-D array of direction/orientation vs. time (cf. exam-
ples in Chapter 5). Six stimulus classes were considered: low-frequency gratings, high-
frequency gratings, 1- and 3-dot negative flows, and 1- and 3-dot positive flows, meaning
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each data point is represented by 6 PSTHs. Because the stimuli in each class were pre-
sented with at least two different spatial frequencies (except for low-freq. gratings, which
was always 0.04 cpd), we selected the PSTH with highest mean FR at the optimal direc-
tion.

Furthermore, even though our PSTHs are 2-D, we choose not to make stimulus di-
rection into a fourth tensor mode—instead, we concatenating the PSTHs for different di-
rections intro a single PSTH vector. This may seem counterintuitive since, in principle,
a tensor is used precisely because of its summarization power (i.e. reconstructing higher
dimensions using fewer parameters). Our reason for keeping a 3-mode tensor is based on
technical aspects of tensor factorization.

Splitting the PSTH into multiple modes forces the total PSTH reconstructed by each
component to be decomposable as an outer product. This restricts each component to
simple and symmetrical patterns, e.g. like circles or horizontal/vertical rectangles in 2-D.
(A diagonal line cannot be represented by a simple component, i.e., as the the outer product
of two 1-D vectors: it needs to be split into several components, each one representing a
small circle akin to a “pixel”, as shown in [121]).

By vectorizing the multi-dimensional PSTH into a single mode, factors are only split
when their parts reconstruct responses for distinct groups of neurons (not necessarily dis-
junct). When there are complex non-separable patterns in the PSTHs, this has three advan-
tages: (i) it can reduce the number of components required—this gives fewer factors with
greater variance, instead of many factors that fit most cells, giving low variance; (ii) fac-
tors are more interpretable; (iii) this prevents correlations/dependencies between different
neural factors.

To see this, consider a 2-D PSTH pattern that cannot be reasonably approximated as the
outer product two vectors alone. If we use a 4-way tensor, this will require several separate
components to reconstruct the same group of neurons. Since the factor matrix will be
used for computing distances between neurons, this would artificially make neurons that
respond in that way to be more distant to the remaining neurons than others which have
a simpler PSTH pattern. (Of course, responses should be considered equal regardless of
whether they are horizontal or diagonal.)

Choosing the tensor modes

Note that, in contrast with the tensor used in [145], we use a “stimulus” mode instead
of one containing all individual trials. Using trials is a requirement when one expects to
find evidence of long-range temporal adaptation, e.g. learning a task, or wishes to find
evidence for temporary neuromodulatory states. Such approach uses a smoothed spike
train for each trial; in our case, averaging across multiple trials helps reduce the variability
typical of spike recordings, especially those from behaving animals.
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Direction/orientation preferences

Since many cells in visual cortex have some direction/orientation preference, but the dis-
tribution of such preference is unlikely to be sufficiently uniform due to the sparseness of
our neuronal sampling, we adopted the following scheme: each neuron’s tuning curve was
fit to a double Gaussian (cf. [95]), and those that had a root-mean-squared error < 15%
were shift-rotated to have their highest peak at a common orientation of π/2. This al-
lows for cells that show similar direction/orientation selectivity to be all similar to each
other, regardless of their specific preferred direction/orientation. Later in this chapter, an
example will demonstrate what happens when such rotation is undone.

6.2 Results for the retina
Extracellular microelectrode recordings were performed on the mouse retina in the Field
lab at Duke University. Spikes were sorted using custom software, resulting in a total of
N = 258 inferred neurons. The present results correspond to a single experiment using the
same stimulus ensemble of gratings and flows as described in Chapter 5. Receptive fields
were estimated using spike-triggered average in response of a checkerboard stimulus, and
the RGC types for a subset of the cells were inferred using the methodology from [153,
150, 108].

Although retinal ganglion cells are not directly connected (at least not with synapses),
they do share common inputs from bipolar and amacrine cells, justifying the notion that
we can use the manifold abstraction to infer not only the functional connectivity between
RGCs [46], but also properties of some of the upstream circuity.

6.2.1 Factorization

Following the procedure laid out in Chapter 3, we obtain an estimate of the rank of the
neural matrix (Fig. 6.1), which we then use to compute an appropriate number of factors
(Fig. 6.2). Details are provided in the captions for these figures.

6.2.2 Neural manifold coordinates

Inspection of the retinal embedding in Fig. 6.3 reveals that what we have in this case is
more a collection of manifolds rather than a single manifold. Although technically its cor-
responding data graph has a single connected component, weights connecting the different
clusters are very small. This highly clustered organization is reminiscent of our embed-
ding for the LN model in which neurons of the same RF type ended up clustered together.
RGCs are classically organized into separate types, and recent efforts have attempted to
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Figure 6.1: Determining the rank of the neural matrix for the retina experiment. A: Evolu-
tion of variance curves for the first few PCs. B: Focusing on higher-numbered eigenvalues
for better resolution. It seems that the curve λ16 never quite decreases, indicating that its
corresponding PC is not significant. C: zooming in even further around λ16, we check
that on the other hand λ15 is clearly not monotonic (the dashed line helps visualize this).
Finally, in D the sum-of-variances curve for the first 15 PCs has a max for F = 15, which
tells us the number of factors needed.

give a general hierarchy of these cells using other machine learning approaches; a total of
around 40 types are suggested.

A useful way to try to validate our results is by checking whether known RGC types
are organized together in the manifold. In fact, this confirms our expectations that by look-
ing to organize cells in terms of their responses we may be able infer their physiological
properties.

A subset of the cells in the data set were previously labeled by the experimenters using
complementary information, and these end up neatly positioned together in the manifold
(see Fig. 6.4. Further confirmation is given by the mosaic organization of cells in each of
these clusters, i.e. completely tiling the visual field, which is a hallmark of cell types in
the retina [41, 46].
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Figure 6.2: Example of factors returned by NTF for the retina data set.

6.2.3 Local neighborhoods

6.3 Results for the cortex
Here, we apply the algorithm to the same data set used in Chapter 5 (first cohort of ex-
periments). These experiments were performed in the Stryker lab at the University of
California–San Francisco (UCSF). Data from four different recordings are combined, re-
sulting in a total of N = 357 sorted neurons. Laminar information and putative cell types
were determined cf. [44].

6.3.1 Factorization

After estimating the rank of the neural matrix for V1 (Fig. 6.1), we can compute an ap-
propriate number of components (examples in Fig. 6.6). A glance at the neural factors
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reveals they are neither sparse nor simple. As one might expect from circuit interactions,
it is difficult to associate individual neurons with individual stimuli. Details are provided
in the captions for these figures.

6.3.2 Neural manifold

In Fig. 6.7 the resulting manifold for the cortical data set is shown. Heat maps are super-
imposed to demonstrate how the neurons are positioned according to main organization
“coordinates”. Preference for a given stimulus is computed as its relative FR within the
ensemble (between 0 and 1). Examples of local neighborhoods across the manifold are
given in Figs. 6.8 , 6.10.

6.4 Deep convolutional networks
Next, we apply the algorithm to deep convolutional networks (DCNs). We used two pop-
ular pretrained models, Alexnet [81] and VGG16 [125], both pretrained on the imagenet
data set [40] of natural images. As our ‘stimuli’, we use a subset of imagenet’s validation
set; each trial is a random shift of the input image across position. The average value across
trials converts each unit’s activity into a ‘firing rate’. In order to make the trials correspond
more exactly to those in our biological experiments, in which the stimuli drift across the
screen, we consider a trial to be is a random shift of the input image across position. With
this, a neuron is likely to fire if there is a good match between its RF and some portion
of the input image, irrespective of its precise location. Different trials are generated with
different shifts (analogously to the different randomized flow instances used in different
trials of our biological experiments). The average value across trials converts each unit’s
activity into a ‘firing rate’. We sample neurons from a subset of the feature maps in a given
layer. Results are given in Figs. 6.11 , 6.12.

The embeddings from DCNs, as one could expect, are organized mainly by feature
map, i.e., neurons sharing the same weights end up tightly clustered together. Still, the
organization of the feature maps within an embedding is a product of their preference
for certain images over others. This means the embedding could be a useful source of
information when training and designing deep nets, e.g. for identifying redundant filters
(candidates for dropout) or those that are more selective towards a specific image category.

6.5 Quantitative comparison
We now apply the flow ratio method from section 4.5 as a way to compare the differ-
ent manifolds in terms of whether they are more “clustered” or “continuous” (Fig. 6.13).
The low value of φG for deep nets means they are (globally) poorly connected, i.e. most
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points cannot reach all points via paths of high conductance. The cortical manifold, on
the other hand, is richly connected, and its value of φG is similar to that of the noisy plane
shown in Fig. 4.8. The conductance for the retinal embedding lies somewhat in between.
Sparsifying the graphs or not doing so gave very similar results.
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Figure 6.3: Main coordinates organizing the retinal “manifold”. A: Heat map represents
preference in terms of relative firing rate (FR) magnitudes for positive flows minus pref-
erence for negative flows. A positive (negative) value indicates higher activity for positive
(negative) flows. B: cells responding to low-frequency gratings are concentrated on one
side of the embedding. C: as in A, but now comparing all gratings vs. all flows. D: Pref-
erence for high- vs. low-frequency gratings is also well organized. E: Stimulus entropy is
computed as the entropy of the vector containing the relative FR for all stimulus classes:
low (high) entropy means a cell responds to few (most) stimuli. F: Labeled RGC types
reveals that the manifold correctly organizes them into clusters. Even though cells with op-
posite contrast preferences are on opposite sides (ON vs. OFF), their responses’ temporal
dynamics can be roughly aligned with each other (transient vs. sustained).
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Figure 6.4: Cluster centroids of labeled RGC types in the retina. A–F represent centroids
of RGC clusters centered at the indicated positions in the central plot (the same as in
Fig. 6.3-F with the unlabeled cells not shown, for clarity), with their average PSTH for
each stimulus class (left) as well as position and shape of their RFs, as estimated by spike-
triggered averages (STAs). PSTH centroids correspond to the expected responses given
the cell types present. In particular, note the mosaic organization of cells’ RFs in each of
these clusters, i.e. completely tiling the visual field. Note how the DS cells in D seem to
prefer positive flows, as predicted by factor b in Fig. 6.2. Also interesting is the marked
oriented response to high-freq. gratings for the looming cells in C.

79



Figure 6.5: Determining the rank of the neural matrix for the cortical experiment. A, B:
Evolution of variance curves for the first 16 PCs. C: The dashed curves help in deciding
which curves have a peak and which don’t. Here, λ15 clearly does, and λ17 does not,
but it is hard to tell for λ16. D: The variance sum curve can help with the choice of R.
Choosing R = 16 here would actually result in a peak at F=15, indicating that the choice
was inadequate (since when F = 15 the neural matrix has 15 columns, so R ≤ 15).
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Figure 6.6: Examples of factors returned by NTF applied to our cortical data set. Neu-
rons here clearly have a distributed role: they can participate in many factors, i.e. respond
in different ways to different stimuli. Factor a describes linear-like (phase-selective) re-
sponses to low-freq. gratings. The PSTH pattern in b resembles a sustained (complex)
response to low-freq gratings. Factor c represents a transient response for both gratings
and negative flows. In d, a highly orientation-selective response to high-freq. gratings. In
e, a good example of the additive nature of the non-negative parts-based representation:
although this exact PSTH pattern is never present by itself, in combination with d it recon-
structs responses with larger tuning width. Both pos. and neg. flows seem to differentiate
between 1- and 3-dot flows (compare f with g and h with i). Notice how, for both po-
larities, the factor with the higher 3-dot contribution is more orientation selective, while
the 1-dot factor is directional selective. Factor i shows that positive flows have a transient
response part as well.
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Figure 6.7: Main coordinates organizing the cortical manifold (similarly as in Fig. 6.3).
A: Flow contrast polarity is one of the main coordinates. It is also clear that a preference
for positive flows is more common. B: Preference for low-frequency gratings in terms
of relative FR. C: Preference for gratings (low + high frequency) minus preference for
flows (positive + negative). D: Looking at higher diffusion coordinates permits one to
organize the neurons by their preference toward high frequency gratings as well. E: Cells
are also organized in terms of “stimulus entropy”, i.e. how evenly distributed is their
preference over the ensemble. Preference for fewer stimuli are “pushed” to the periphery.
F: Interestingly, cell types (inhibitory vs. excitatory) are also somewhat organized, with a
portion of the manifold being exclusively excitatory, even though this information was not
given to the algorithm. 82



Figure 6.8: Local neighborhoods have distinct cell types and laminar profiles. Top left
plot indicates position of neighborhood on manifold; the top right diagram shows the layer
and cell-type distribution of individual neurons (circle areas are proportional to average
firing rate). PSTHs at the bottom are the centroids of the points selected (average PSTH
for each stimulus class). Starting at the position in A, we see exclusive response to low-
freq gratings in a linear-like fashion (phase-oriented). These are all excitatory and mostly
occupy layers 2/3 and 6. Moving upwards, in (B) we begin to see cells that respond to
high-frequencies as well (layer 2/3 contribution disappears). In C, the response to low-
freq. gratings is weaker, and there are oriented responses to both high-freq. gratings and
positive 3-dot flows (but not to 1-dot flows). D: a group of cells mostly in layer 2/3 with a
strong preference for negative flows, in particular 1-dots.
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Figure 6.9: Similarly as in Fig. 6.8, but tracing a different path along the manifold. If we
now move to the right, inA we see that low-freq. grating responses are more complex-like;
inhibitory cells are present now, and in all layers; in B, responses to positive flows begin
to appear. Moving further to the right C we see a neighborhood with marked transient re-
sponses to low-freq. gratings, all inhibitory; moving upwards (D) we see strong responses
to negative flows as well, and inhibition is reduced. In E and F, two groups responding
strongly to positive flows, the first containing both inhibitory and excitatory neurons and
the other completely excitatory. Although both have a clear preference for positive flows,
the former responds to both flow polarities, while the latter is more selective.
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Figure 6.10: Re-embedding a specific neighborhood from the full cortical manifold. Here,
we run the algorithm on cells that respond exclusively to low-frequency gratings (Fig. 6.8-
A). By letting their original direction/orientation preferences intact, we obtain an embed-
ding that is reminiscent of the ring model, as orientation preference is organized around a
circle.
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Figure 6.11: Building the neural manifold of a deep convolutional network. A: Diagram
of Alexnet (adapted from [81]). B: After using images from Imagenet as stimuli, 169
neurons were sampled from each of 15 most activate feature maps from the second layer
(N = 2535). C: examples of the factors obtained. Neural factors: visualized as heatmap,
each neuron is represented as a pixel, and individual feature maps are arranged as 13× 13
square tiles. The factors tell us that neurons in the same feature map fire together, given
that our stimuli are randomly shifted over different trials. Stimulus factors: each dot
is an image from one of the 5 categories used. Different factors (i.e., different feature
maps) respond more strongly to specific images or categories. D: We obtained a highly
clustered embedding where neurons are color-labeled by feature map. Neurons from the
same feature map are clustered together, which is not entirely surprising since they share
the same weights, so should give similar outputs for the same input images.
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Figure 6.12: Embeddings of superficial and deep layers from the VGG16 network [125].
A: Diagram of the network; as in Fig. 6.11 using Imagenet as input stimuli. B: Results for
both the first (B) and 13th (C) convolutional layers look qualitatively the same: neurons
in the same feature map are tightly clustered, with some feature maps more similar than
others (in terms of their preference for images). Mixing multiple layers together does not
change the results either (not shown).
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Figure 6.13: Comparison of mean flow ratio (φG) for the three examples discussed in
this chapter. From a functional architecture perspective, deep nets are more similar to
the retinathan to primary visual cortex. Deep nets: highly clustered; local neighborhoods
correspond to feature maps. Retina: clustered; local neighborhoods correspond to physio-
logical types. Cortex: properties vary smoothly between nearby neighborhoods.
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Chapter 7

Discussion

7.1 Summary and conclusions
The rapid development of multi-electrode and imaging techniques is leading to a data
explosion in neuroscience, opening the possibility of truly understanding the organization
and functionality of our visual systems. However, at the operational level the need for
more natural stimuli greatly increases the complexity of the data. Together, these create
a challenge for machine learning. Techniques to infer organization and function from an
operating visual system are required. Our goal in this thesis was to develop one such
technique. The central pillar of our contribution is designing a manifold of neurons, and
providing an algorithmic approach to inferring it. This manifold is functional, in the sense
that nearby neurons on the manifold are those that are likely to participate in common
circuits, since neurons that are near one another respond similarly (in time) to similar
aspects of the stimulus ensemble. By organizing the neurons, our manifold differs from
other, standard manifolds as they are used in visual neuroscience which instead organize
the stimuli. In effect, our manifold is a type of ‘inverse’ to the standard approach.

Our contributions are twofold. First, we developed the machine learning techniques to
infer the manifold of neurons. We set this as a multistage process, beginning with the most
basic organization of all the data. Adopting a multi-linear view of potential circuitry, we
developed a tensor representation of the data. Three modes are used: (i) the neurons, (ii)
the stimulus ensemble, and (iii) their responses represented as a PSTH (peristimulus time
histogram).

Non-negative tensor factorization was used as a means to get an approximate multi-
clustering of the data. That is, each factor suggests, in a linear approximation, which
neurons are responding to certain stimuli in a similar fashion. When the neural loadings
are orthogonal and the interactions linear, this suffices as a functional model, as shown
with an artificial example. In general, however, the factors are far from orthogonal. We in-
terpret this as indicating that the same neurons could participate in the processing of many
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different stimuli. That is, neurons in general participate in multiple functional circuits,
which leads to our second stage, the use of diffusion geometry to articulate the neural
manifold. Key to this choice is the network/manifold duality: at finite scale the data are
discrete, thereby suggesting a network among neurons.

Complicating matters is determining the tensor rank, or how many factors to use. Nor-
mally a reconstruction norm is employed, but that is not always appropriate in the neuro-
science context. Noise is inherent in the process and our goal is not to model it. Instead,
we develop an intermediate representation between the tensor factors and the diffusion
kernel, what we call the neural matrix. The columns of this matrix are specified by the
neural (loadings of the) factors, and can be interpreted as a basis for a new space in which
neurons can be plotted.

The neural matrix is informative. Since this space is Euclidean, other basis vectors
could be obtained through linear combinations of existing ones. This would not add new
structure to the space, and leads to our condition on tensor rank: to add new factors until
the neural matrix saturates in expressivity. This latter expressivity condition is formally
modeled in terms of ’variance explained.’

The overall topology of the manifold provides information about qualitative circuit
characteristics. If the data were sampled from functionally distinct circuits, then the man-
ifold would be discontinuous, with a separate ‘cluster’ of neurons for each distinct circuit
component. If the data were sampled from a richly interconnected circuit, then the man-
ifold would be continuous. Artificial examples of random receptive fields and the ring
model for orientation selectivity in visual cortex confirm these observations. Applying
these ideas to actual neurophysiological data is a major goal for this project.

Before studying real data, a key problem remains. To apply manifold learning tech-
niques, a kernel on the data must be defined. This kernel specifies how ‘similiar’ two data
points—-neurons, in our case—are to each other. Like many others, we employ a Gaussian
kernel, but this requires specifying its bandwidth. Normally one assumes that the data are
roughly uniform but, for our neuroscience problem, this is clearly not the case. Instead, we
introduce a kernel in the neural matrix space, then refine it based on graph sparsification
techniques. This is a second contribution to the machine learning component of the the-
sis, and we expect that the use of graph-theoretic conditioners for the kernel in manifold
learning will become a direction for further research.

We are now ready to turn to the neuroscience problem. The first issue is that, for the
algorithm to work, the underlying circuitry must be exercised to as full an extent as pos-
sible. Earlier work had indicated that standard stimuli were too limiting for the mouse’s
visual system, but unconstrained natural stimuli are virtually impossible to analyze. (In
terms above, the stimulus mode of the tensor would become large, so it would be impos-
sible to gather enough data.) We discovered that a class of flow stimuli, which simulate
what the mouse would ‘see’ running through a field, actually exercise much more of its
visual system than the artificial stimuli. These, together with the artificial stimuli, provide
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our stimulus ensemble.
We have begun two collaborations to show our stimuli to the mouse. Beginning with

the retina, the Field Laboratory at Duke University was able to record responses in retinal
ganglion cells to the stimulus ensemble. At first glance, one might guess that the retina
would consist of discrete circuits, since much of the processing is feed-forward. Applying
our algorithms to the Duke data showed that, in fact, this is only partly the case, at least
for preliminary data. Some retinal ganglion cell types do cluster, while others are more
extended in the manifold. In retrospect this is completely plausible, since horizontal and
amacrine cells provide the substrate for interaction.

The situation in cortex is drastically different. Now, working with data from area V1 in
mouse obtained in the Stryker Laboratory at the University of California–San Francisco,
preliminary data were obtained from an awake, behaving mouse viewing the full stimulus
ensemble. Coordinates on the manifold of neurons are similar to those on the retinal
embeddings.

The primary difference between retina and cortex was the extent of recurrence and
interconnection. A measure of conductance was developed to formalize this, and indeed
the cortex exhibits an extremely high degree of connectivity. Modern work suggests there
are about 40 different types of retinal ganglion cells. Our manifolds suggest that, for
cortex, the situation will be even more extreme. From a functional circuit point of view, in
fact, there may be a continuum of cortical function types.

Finally, we turn to perhaps the most widely used model for cortex, deep convolutional
networks. Their feedforward architecture leads to manifolds that are even more clustered
than the retina, and not at all like those of cortex. This suggests, perhaps, that they may
not suffice as general models for Artificial Intelligence.

We close by revisiting the two conjectures at the beginning of this thesis.
CONJECTURE 1 Although the retina can be viewed as an ‘outcropping’ of the brain, the
(relatively) distinct retinal ganglion cell types differ fundamentally from the functional cell
types in cortex, which are distributed much more continuously.

Our analysis of preliminary data is consistent with this conjecture.
CONJECTURE 2 Although deep convolutional networks have been used as models of cor-
tex, and as models for cognitive vision, they are closer to big retinas than to little brains.

Our analysis of standard networks, when compared to biological networks, is consis-
tent with this conjecture.
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7.2 Final remarks and future work

7.2.1 Exploring different stimulus ensembles

A key feature of our approach is that it allows for explicitly comparing different stimulus
ensembles in terms of the ranks of the neural matrices they produce. Relevant stimuli
are those that when added to a given ensemble will result in an accompanying increase in
rank. The possibility of combining multiple experiments into a single manifold is highly
attractive since it is a way of remedying the sampling restrictions in real neurons.

7.2.2 Robust kernels for manifold learning

Sparse data graphs remain stable over a larger range of ε, which reduces the importance of
a specific choice of that parameter. Importantly, our measure of how continuous/clustered
a manifold is also robust regardless of sparsification. The examples shown seem to indicate
that perhaps the best approach is to choose a larger ε than the average minimal distance
(eq. 4.6) and then sparsify the resulting graph. Not only does this seem to give stable
results, it is computationally efficient, especially for large data sets, providing a promising
avenue for further investigation. Additionally, sparsification allows for the identification of
each point’s ‘discrete neighbors’, which can be used in multiscale approaches to bandwidth
selection.

7.2.3 Applications to artificial neural networks

Our results show that deep convolutional networks yield manifolds that are disconnected
like the retina, not continuous like V1. For neuroscience, this could explain the appar-
ent ceiling in modeling cortical data; the limitations of categorical tasks; and suggests
future modeling directions. For AI, our manifold can identify co-activations of feature
maps across layers, revealing higher-order features, and suggesting different approaches
to performing ‘dropout.’ More generally, it illuminates limitations on the categorization
problem, and underlines the importance of recurrence in networks for more complex tasks.
A natural next step will be to extend this analysis to artificial recurrent networks and com-
pare the results.
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