2,427 research outputs found

    The TTC 2015 Model Execution Case

    Get PDF
    Abstract. This paper describes a case study for the Transformation Tool Contest (TTC) 2015 concerning the execution of models. The case foresees the specification of the operational semantics of a subset of the UML activity diagram language with transformation languages. In particular, the computation of the end result of the execution of the activity diagrams is targeted as well as the provisioning of a precise trace for the complete execution. The evaluation concerns the correctness of the operational semantics specifications, its understandability and conciseness, as well as its performance

    fUML Activity Diagrams with RAG-controlled Rewriting -A RACR Solution of The TTC 2015 Model Execution Case

    Get PDF
    This paper summarises a RACR solution of The TTC 2015 Model Execution Case. RACR is a metacompiler library for Scheme. Its most distinguished feature is the seamless combination of reference attribute grammars and graph rewriting combined with incremental evaluation semantics. The presented solution sketches how these integrated analyses and rewriting facilities are used to transform fUML Activity Diagrams to executable Petri nets. Of particular interest are (1) the exploitation of reference attribute grammar analyses for Petri net generation and (2) the efficient execution of generated nets based on the incremental evaluation semantics of RACR

    Towards Distributed Model Transformations with LinTra

    Get PDF
    Performance and scalability of model transformations are becoming prominent topics in Model-Driven Engineering. In previous works we introduced LinTra, a platform for executing model transformations in parallel. LinTra is based on the Linda model of a coordination language and is intended to be used as a middleware where high-level model transformation languages are compiled. In this paper we present the initial results of our analyses on the scalability of out-place model-to-model transformation executions in LinTra when the models and the processing elements are distributed over a set of machines.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Synapse: Synthetic Application Profiler and Emulator

    Full text link
    We introduce Synapse motivated by the needs to estimate and emulate workload execution characteristics on high-performance and distributed heterogeneous resources. Synapse has a platform independent application profiler, and the ability to emulate profiled workloads on a variety of heterogeneous resources. Synapse is used as a proxy application (or "representative application") for real workloads, with the added advantage that it can be tuned at arbitrary levels of granularity in ways that are simply not possible using real applications. Experiments show that automated profiling using Synapse represents application characteristics with high fidelity. Emulation using Synapse can reproduce the application behavior in the original runtime environment, as well as reproducing properties when used in a different run-time environments

    High-throughput Binding Affinity Calculations at Extreme Scales

    Get PDF
    Resistance to chemotherapy and molecularly targeted therapies is a major factor in limiting the effectiveness of cancer treatment. In many cases, resistance can be linked to genetic changes in target proteins, either pre-existing or evolutionarily selected during treatment. Key to overcoming this challenge is an understanding of the molecular determinants of drug binding. Using multi-stage pipelines of molecular simulations we can gain insights into the binding free energy and the residence time of a ligand, which can inform both stratified and personal treatment regimes and drug development. To support the scalable, adaptive and automated calculation of the binding free energy on high-performance computing resources, we introduce the High- throughput Binding Affinity Calculator (HTBAC). HTBAC uses a building block approach in order to attain both workflow flexibility and performance. We demonstrate close to perfect weak scaling to hundreds of concurrent multi-stage binding affinity calculation pipelines. This permits a rapid time-to-solution that is essentially invariant of the calculation protocol, size of candidate ligands and number of ensemble simulations. As such, HTBAC advances the state of the art of binding affinity calculations and protocols
    corecore