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Abstract. Performance and scalability of model transformations are becoming
prominent topics in Model-Driven Engineering. In previous works we introduced
LinTra, a platform for executing model transformations in parallel. LinTra is
based on the Linda model of a coordination language and is intended to be used
as a middleware where high-level model transformation languages are compiled.
In this paper we present the initial results of our analyses on the scalability of
out-place model-to-model transformation executions in LinTra when the models
and the processing elements are distributed over a set of machines.

1 Introduction

The performance and scalability of model transformations is gaining interest as industry
is progressively adopting model-driven techniques, multicore computers are becoming
commonplace and the cloud is extensively used. However, existing model transforma-
tion engines are mostly based on sequential and in-memory execution strategies, and
thus their capabilities to transform large models in parallel and distributed environments
are limited.

In previous works we introduced LinTra [2,3], a platform for executing model trans-
formations in parallel. LinTra is based on the Linda model of a coordination language
and is intended to be used as a middleware where high-level model transformation
languages are compiled. Currently LinTra outperforms existing sequential and parallel
model transformation engines, but we also wanted to study how the distribution aspects
affect the performance of LinTra. In this paper we present the initial results of our anal-
yses on the scalability of out-place model-to-model transformation executions in LinTra
when the models and the processing elements are distributed over a set of machines.

This paper is organized as follows. After this introduction, Sect. 2 briefly describes
the background of our proposal and the running example we use in the paper to illustrate
our approach. Then, Sect. 3 describes an implementation and evaluation based on the
case study and, finally, Sect. 4 draws some conclusions and outlines future work.

2 Background

2.1 LinTra

LinTra [2, 3] is a framework for the parallel execution of model transformations. It
uses data-parallelism and the Blackboard paradigm [4] to store the input and output
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Fig. 1. IMDb Metamodel taken from [5].

models, as well as the required data to keep track of the MT execution that coordinates
the agents that are involved in the transformation process. One of the key aspects of
LinTra is the model and metamodel representation, wherein every entity is assigned
an identifier, which is used to reference objects and to represent relationships between
them. Relationships between entities are represented by storing in the source entity the
identifier(s) of its target entity(ies).

In LinTra, traceability is implemented implicitly using a bidirectional function that
receives as a parameter the entity identifier of the input model and returns the identifier
of the output entity, regardless whether the output entities have already been created or
not. This means that LinTra does not store information about traces explicitly; thus, the
performance is not affected by the search for trace information.

In order to carry out the transformation process in parallel, LinTra uses data-parallelism
and the Master-Slave design pattern [4]. The master’s job is to launch slaves and coor-
dinate their work. Each slave is in charge of applying the transformation to submodels
of the input model (i.e., partitions) as if each partition is a complete and independent
model. Since in LinTra’s out-place mode the complete input model is always available,
in case the slaves have data dependencies with elements that are not in the submodels
they were assigned, they only have to query the Blackboard to retrieve them.

2.2 Running example

The example that we have selected uses the “Movie Database” (IMDb) proposed in the
Transformation Tool Contest (TTC) 2014 [5], whose metamodel is shown in Figure 1.
For exercising the distribution aspects we simply use the identity transformation, which
permits checking how fast the complete model graph can be traversed and copied, i.e.,
focusing on the communication aspects more than on the computational aspects of the
transformation itself.

3 Implementation and Evaluation

The goal is to be able to know how the distribution of data and processes affects the per-
formance of the model transformation in LinTra. Instead of using one parallel machine,



what happens when the model is distributed among several machines, or the slaves are
executed in different nodes?

In general, the analysis of the effect of data and processes distribution on the perfor-
mance of a model transformation is a complex task, and a comprehensive study should
deserve its own line of research. However, to initially answer this research question
we have conducted some experiments in order to estimate some limits of the execu-
tion times of a model transformation when either the model, the slaves, or both, are
distributed among several machines. For that we used two machines (A and B), with
4 cores each, connected in a LAN via TCP/IP. We used a very basic communication
platform to implement the distributed blackboard, based on Java HashMaps to store the
models and sockets for communicating the machines—hence avoiding the layers that
any technological solution such as LevelDB or Cassandra would add. Our goal was to
obtain the lower bounds for the execution times, independently from any solution.

We selected the IMDb-Identity model transformation case study3, which basically
traverses a 5 million elements model and produces a copy of it as the target model. We
considered five configurations:

– Config.0: One local machine (A). All slaves are executed locally. Both source and
target models are stored locally.

– Config.1: Two machines (A and B). All slaves are executed in A. Source and target
models are stored (mingled) in both machines: elements with even identifiers in one
and with odd identifiers in the other, in order to exacerbate data distribution.

– Config.2: Two machines (A and B). All slaves are executed in A. Source model
stored in A and target model in B (best case for distribution).

– Config.3: Two machines (A and B). Half of the slaves are executed in each machine.
Source and target models are stored both machines, mingled as in Config.1.

– Config.4: Two machines (A and B). Half of the slaves are executed in each machine.
Source and target models are stored in both machines, but taking care that each
slave only handles data stores locally.

For each configuration we executed the transformation on subsets of the complete
model of increasing size, emulating different sizes of the database model to check
how different model transformation engines scale up. The resulting execution times are
shown in the left table of Fig. 2. The right table shows the speed-ups when compared
with Config.0.

It is interesting to observe how data distribution has a significant impact on the
model transformation execution performance. Resulting times for Config.1 and Con-
fig.3, in which the data is evenly spread and forces all slaves to access half of the data
in each machine, suffer from heavy network access. Config.2 and Config.4, on the con-
trary, offer good results. Of course, when all slaves are executed in one machine and
the target model resides remotely, the network access introduces some delay (an aver-
age speed-up of 3.8 according to our results). Config.4, in turn, provides the best case
because it gets the two machines working in parallel and handling just local data (apart
from the access to the shared area to gets the jobs, which resides only in machine A).
The average speed-up of 0.39 is a significant achievement for this best case.

3 http://atenea.lcc.uma.es/index.php/Main Page/Resources/LinTra#IMDb



Fig. 2. Execution times (left) and relative speedups (right) of distributed configurations.

Data and process distribution may have a significant impact on the performance of
a model transformation. As expected, the results are very sensitive to the way in which
data and processes are distributed among the nodes. We have run some experiments to
show some initial results, but this issue deserves further investigations and more detailed
analysis to provide more generalized results.

4 Conclusions and Future Work

This position paper has presented some initial experiments that try to estimate the effect
of both data and process distribution on the performance of LinTra model transforma-
tions. The study conducted here is specific for that solution. We plan to compare these
results with the emerging MT engines that also provide distribution (e.g. [1]). We also
want to use different technological platforms that offer data distribution to evaluate their
performance when connected with LinTra. More precisely, we want to check Infinispan
with LevelBD as persistence layer whose results with LinTra are better than other data-
grids when executed on a single machine [3], and the combination of Apache Spark
and Cassandra. Finally, we also want to use UDP instead of TCP to see the speed-up
obtained by simplifying the communication protocol used.
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