30 research outputs found

    Nonclassical Polynomials as a Barrier to Polynomial Lower Bounds

    Get PDF
    The problem of constructing explicit functions which cannot be approximated by low degree polynomials has been extensively studied in computational complexity, motivated by applications in circuit lower bounds, pseudo-randomness, constructions of Ramsey graphs and locally decodable codes. Still, most of the known lower bounds become trivial for polynomials of super-logarithmic degree. Here, we suggest a new barrier explaining this phenomenon. We show that many of the existing lower bound proof techniques extend to nonclassical polynomials, an extension of classical polynomials which arose in higher order Fourier analysis. Moreover, these techniques are tight for nonclassical polynomials of logarithmic degree

    Fourier Conjectures, Correlation Bounds, and Majority

    Get PDF

    Improved Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas

    Get PDF
    We give the best known pseudorandom generators for two touchstone classes in unconditional derandomization: an ε\varepsilon-PRG for the class of size-MM depth-dd AC0\mathsf{AC}^0 circuits with seed length log(M)d+O(1)log(1/ε)\log(M)^{d+O(1)}\cdot \log(1/\varepsilon), and an ε\varepsilon-PRG for the class of SS-sparse F2\mathbb{F}_2 polynomials with seed length 2O(logS)log(1/ε)2^{O(\sqrt{\log S})}\cdot \log(1/\varepsilon). These results bring the state of the art for unconditional derandomization of these classes into sharp alignment with the state of the art for computational hardness for all parameter settings: improving on the seed lengths of either PRG would require breakthrough progress on longstanding and notorious circuit lower bounds. The key enabling ingredient in our approach is a new \emph{pseudorandom multi-switching lemma}. We derandomize recently-developed \emph{multi}-switching lemmas, which are powerful generalizations of H{\aa}stad's switching lemma that deal with \emph{families} of depth-two circuits. Our pseudorandom multi-switching lemma---a randomness-efficient algorithm for sampling restrictions that simultaneously simplify all circuits in a family---achieves the parameters obtained by the (full randomness) multi-switching lemmas of Impagliazzo, Matthews, and Paturi [IMP12] and H{\aa}stad [H{\aa}s14]. This optimality of our derandomization translates into the optimality (given current circuit lower bounds) of our PRGs for AC0\mathsf{AC}^0 and sparse F2\mathbb{F}_2 polynomials

    On the hardness of learning sparse parities

    Get PDF
    This work investigates the hardness of computing sparse solutions to systems of linear equations over F_2. Consider the k-EvenSet problem: given a homogeneous system of linear equations over F_2 on n variables, decide if there exists a nonzero solution of Hamming weight at most k (i.e. a k-sparse solution). While there is a simple O(n^{k/2})-time algorithm for it, establishing fixed parameter intractability for k-EvenSet has been a notorious open problem. Towards this goal, we show that unless k-Clique can be solved in n^{o(k)} time, k-EvenSet has no poly(n)2^{o(sqrt{k})} time algorithm and no polynomial time algorithm when k = (log n)^{2+eta} for any eta > 0. Our work also shows that the non-homogeneous generalization of the problem -- which we call k-VectorSum -- is W[1]-hard on instances where the number of equations is O(k log n), improving on previous reductions which produced Omega(n) equations. We also show that for any constant eps > 0, given a system of O(exp(O(k))log n) linear equations, it is W[1]-hard to decide if there is a k-sparse linear form satisfying all the equations or if every function on at most k-variables (k-junta) satisfies at most (1/2 + eps)-fraction of the equations. In the setting of computational learning, this shows hardness of approximate non-proper learning of k-parities. In a similar vein, we use the hardness of k-EvenSet to show that that for any constant d, unless k-Clique can be solved in n^{o(k)} time there is no poly(m, n)2^{o(sqrt{k}) time algorithm to decide whether a given set of m points in F_2^n satisfies: (i) there exists a non-trivial k-sparse homogeneous linear form evaluating to 0 on all the points, or (ii) any non-trivial degree d polynomial P supported on at most k variables evaluates to zero on approx. Pr_{F_2^n}[P(z) = 0] fraction of the points i.e., P is fooled by the set of points

    Counting Solutions to Polynomial Systems via Reductions

    Get PDF
    This paper provides both positive and negative results for counting solutions to systems of polynomial equations over a finite field. The general idea is to try to reduce the problem to counting solutions to a single polynomial, where the task is easier. In both cases, simple methods are utilized that we expect will have wider applicability (far beyond algebra). First, we give an efficient deterministic reduction from approximate counting for a system of (arbitrary) polynomial equations to approximate counting for one equation, over any finite field. We apply this reduction to give a deterministic poly(n,s,log p)/eps^2 time algorithm for approximately counting the fraction of solutions to a system of s quadratic n-variate polynomials over F_p (the finite field of prime order p) to within an additive eps factor, for any prime p. Note that uniform random sampling would already require Omega(s/eps^2) time, so our algorithm behaves as a full derandomization of uniform sampling. The approximate-counting algorithm yields efficient approximate counting for other well-known problems, such as 2-SAT, NAE-3SAT, and 3-Coloring. As a corollary, there is a deterministic algorithm (with analogous running time) for producing solutions to such systems which have at least eps p^n solutions. Second, we consider the difficulty of exactly counting solutions to a single polynomial of constant degree, over a finite field. (Note that finding a solution in this case is easy.) It has been known for over 20 years that this counting problem is already NP-hard for degree-three polynomials over F_2; however, all known reductions increased the number of variables by a considerable amount. We give a subexponential-time reduction from counting solutions to k-CNF formulas to counting solutions to a degree-k^{O(k)} polynomial (over any finite field of O(1) order) which exactly preserves the number of variables. As a corollary, the Strong Exponential Time Hypothesis (even its weak counting variant #SETH) implies that counting solutions to constant-degree polynomials (even over F_2) requires essentially 2^n time. Similar results hold for counting orthogonal pairs of vectors over F_p
    corecore