
Counting Solutions to Polynomial Systems via
Reductions∗

Richard Ryan Williams

MIT CSAIL & EECS, Cambridge, MA, USA
rrw@mit.edu

Abstract
This paper provides both positive and negative results for counting solutions to systems of poly-
nomial equations over a finite field. The general idea is to try to reduce the problem to counting
solutions to a single polynomial, where the task is easier. In both cases, simple methods are
utilized that we expect will have wider applicability (far beyond algebra).

First, we give an efficient deterministic reduction from approximate counting for a system
of (arbitrary) polynomial equations to approximate counting for one equation, over any finite
field. We apply this reduction to give a deterministic poly(n, s, log p)/ε2-time algorithm for
approximately counting the fraction of solutions to a system of s quadratic n-variate polynomials
over Fp (the finite field of prime order p) to within an additive ε factor, for any prime p. Note
that uniform random sampling would already require Ω(s/ε2) time, so our algorithm behaves as
a full derandomization of uniform sampling. The approximate-counting algorithm yields efficient
approximate counting for other well-known problems, such as 2-SAT, NAE-3SAT, and 3-Coloring.
As a corollary, there is a deterministic algorithm (with analogous running time) for producing
solutions to such systems which have at least εpn solutions.

Second, we consider the difficulty of exactly counting solutions to a single polynomial of
constant degree, over a finite field. (Note that finding a solution in this case is easy.) It has
been known for over 20 years that this counting problem is already NP-hard for degree-three
polynomials over F2; however, all known reductions increased the number of variables by a
considerable amount. We give a subexponential-time reduction from counting solutions to k-
CNF formulas to counting solutions to a degree-kO(k) polynomial (over any finite field of O(1)
order) which exactly preserves the number of variables. As a corollary, the Strong Exponential
Time Hypothesis (even its weak counting variant #SETH) implies that counting solutions to
constant-degree polynomials (even over F2) requires essentially 2n time. Similar results hold for
counting orthogonal pairs of vectors over Fp.

1998 ACM Subject Classification G.1.5 Numerical Analysis – Roots of Nonlinear Equations,
I.1.2 Symbolic and Algebraic Manipulation – Algorithms

Keywords and phrases counting complexity, polynomial equations, finite field, derandomization,
strong exponential time hypothesis

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.6

1 Introduction

A canonical problem in pseudorandomness is:

Given a class C of Boolean circuits, is there a deterministic and efficient method for
approximately counting the fraction of satisfying assignments to any circuit from C?

∗ Supported by NSF CAREER Grant CCF-1741615. A talk on an early version of this work can be found
at https://youtu.be/gJxpUhc1Gfc

© Richard Ryan Williams;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 6; pp. 6:1–6:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/154064062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.SOSA.2018.6
https://youtu.be/gJxpUhc1Gfc
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

6:2 Counting Solutions to Polynomial Systems via Reductions

By uniformly random sampling Θ(1/ε2) inputs to a given circuit, we can easily obtain an
additive ε-approximation to the fraction of satisfying assignments, with high probability.
Thus the above problem amounts to deterministically achieving what trivial random sampling
can provide in a natural setting, with the target of reaching poly(n)/ε2 time (or perhaps
even better in some cases where randomness can also achieve more, such as approximately
counting knapsack solutions [20]).

The general problem of finding such algorithms has been studied for decades. Of most
relevance to this paper are the prior results for AC0 circuits [2, 30, 8], for CNF/DNF of
bounded or unbounded width [28, 23, 32, 21], and for Fq polynomials of constant degree [29,
6, 7, 33]. Approximate counting algorithms with only a 1/ε2 dependence in the running time
are not known for any of these problems except in the case of degree-two polynomials, where
one can exactly count solutions over a finite field in polynomial time (see the Preliminaries).
We would like to “lift” this nice algorithm to more expressive representations.

In the first part of this paper, we study approximate counting for an NP-hard problem in
algebra:

Counting Solutions to Multivariate Quadratic Systems (#MQS)
Given: A system of degree-two polynomials over Fp[x1, . . . , xn], for some prime p
Output: The number of solutions to the system.

The decision version of #MQS (“is there a solution?”) is well-known to be NP-hard,
and is of interest in several theoretical and practical areas (see [27] for references). With
regards to approximating #MQS, the best deterministic algorithm in the literature is due to
Viola [33], who gave a pseudorandom generator for fooling a degree-d polynomial with seed
length at least d logn+ d2d log(1/ε). Since the Fourier spectrum of the AND function has
low `1-norm (see for example [9]), a pseudorandom generator for a single polynomial extends
to a system of polynomials, yielding a deterministic approximation algorithm for the fraction
of #MQS solutions with running time poly(n) · ε−8.

Approximately Solving #MQS

The first main result of this paper is that the 1/ε2 dependence of the random sampling
algorithm for #MQS can be matched in a deterministic way.

I Theorem 1. For every prime p, there is a deterministic algorithm running in
poly(n, s, log p)/ε2 time for approximately counting the fraction of solutions to a system
of s quadratic equations in n variables over Fp.

As a corollary, one can also efficiently and deterministically find solutions to any system
of quadratic equations, provided there are many solutions:

I Corollary 2. For every prime p, there is a deterministic algorithm running in
poly(n, s, log p)/ε2 time which, given any system of s quadratic equations in n variables
over Fp with at least εpn solutions, outputs a solution.

Recalling that more common counting problems such as #2-SAT and #NAE-3-SAT can
easily be expressed as an instance of #MQS with no increase in the number of variables,
Theorem 1 implies improved approximation algorithms (in terms of ε) for those problems
as well: the best known approximate counting algorithm for general k-SAT is that of
Trevisan [32] which has an 1/εk2k ln(4) dependence in the running time. (Note that Viola’s

R. R. Williams 6:3

PRG is slightly faster in terms of ε.) For a non-binary example, the 3-coloring problem
can be represented as a system of quadratic polynomials over F3 (for each edge (i, j) in
your graph, include a polynomial P (xi, xj) which is 0 if and only if xi 6= xj). In general,
constraint satisfaction problems over a prime-order domain and two variables per constraint
are handled by Theorem 1.

The key to Theorem 1 is a reduction from approximate counting for a system of degree-d
polynomials to approximate counting for a single polynomial:

I Theorem 3. For all primes p, integers d > 0, and ε ∈ (0, 1), there exists a deterministic
poly(n, s, log p)-time reduction from approximately counting solutions to systems of degree-d
equations over Fp to within an ε factor, to approximately counting solutions to one degree-d
equation over Fp to within a Θ(ε3/s2) factor.

Theorem 3 is appealing for several reasons.1
First, it is somewhat surprising at first glance. For example, detecting feasibility of a
system of quadratic polynomials (over any field) is NP-hard, but detecting the feasibility
of only one such polynomial is trivial. Thus in some cases, our reduction efficiently
reduces an NP-hard problem to an easy one — but only for the task of approximate
counting.
Second, the proof is extremely simple in hindsight. The central idea consists of applying
the known constructions of small-biased sets in just the right way to solve the problem.
We also show how such sets yield new schemes for approximating the intersection of a set
family.
Third, Theorem 3 is extremely generic, in comparison with its application (Theorem 1):
it works for any polynomial system of any degree.

Theorem 1 follows from applying the reduction of Theorem 3 and an exact counting
algorithm for #MQS instances with only one equation. We certainly do not obtain a
pseudorandom generator in this way, but we do get a considerably different perspective on
approximate counting in this domain. (We also do not use any algebraic geometry tools,
which often appear in the literature on counting solutions to polynomial systems.)

SETH-Hardness of Exactly Counting Roots of One O(1)-Degree Polynomial

Complementing the above approximation algorithm, we use similar ideas to give a strong
hardness reduction for exactly counting solutions (zeroes) of degree-d polynomials over a
finite field of constant order, for constant d > 2. Finding a solution to such a polynomial is
not hard: by a variant of the Schwartz-Zippel-DeMillo-Lipton lemma (see for example [36]),
a not-identically-zero polynomial p of degree-d is nonzero on at least a 1/2d-fraction of points
in {0, 1}n, so it is easy to find a nonzero of p with randomness over any small field. (It is
also easy to find a zero of p in {0, 1}n as well, by considering the polynomial 1− pq−1 where
q is the order of the field.)

Ehrenfeucht and Karpinski [17] showed that the solution-counting problem is already
NP-hard for a single degree-3 polynomial over F2. However, all reductions from k-SAT to
the counting problem (to our knowledge) increased the number of variables by a polynomial

1 Note that over the real numbers, it is easy to reduce a system of polynomial equations {pi(x1, . . . , xn) =
0} of degree d to a single equation of degree 2d, by simply taking the sum of squares of the pi. This is
not useful for us, since (1) it does not work over a finite field and (2) in order for the approximation
algorithm to work, we need a reduction that does not increase the degree.

SOSA 2018

6:4 Counting Solutions to Polynomial Systems via Reductions

factor; in the worst case, Ω(n) new variables are introduced. Here we give a much improved
reduction in terms of the number of variables, sacrificing a bit in the degree:

I Theorem 4. Let q be a prime power and ε > 0 be arbitrarily small. There is an O(qεn)-time
deterministic reduction from #k-SAT instances with n variables to the problem of counting
roots to a Fq-polynomial of degree q(k/ε)O(k) with n variables.

In fact, the proof of Theorem 4 provides a subexponential-time reduction from the
problem of exactly counting solutions to systems of O(n) degree-k equations to that of exactly
counting the zeros of one polynomial of degree q(k/ε)O(k), similarly to how Theorem 3 gives
a polynomial-time reduction from approximate counting a degree-k system to approximate
counting for a single degree-k polynomial. The high-level structure of the two reductions
are similar as well: both reductions output a linear combination of the outputs of their
oracle calls. However, the actual oracle calls themselves are quite different. Theorem 3 uses
small-biased sets to construct a polynomial number of oracle calls, and obtain an approximate
solution count; Theorem 4 uses a multiplication trick so that the number of oracle calls is
only subexponential, while preserving the exact count. (The multiplication trick is the reason
why the degree of the underlying polynomials increases to q(k/ε)O(k).)

From Theorem 4, it follows that the Strong Exponential Time Hypothesis (even its
counting variant #SETH) predicts that for all ε > 0, there is a constant dε > 2 such that
counting Boolean solutions to degree-dε polynomials (even over F2) cannot be done in (2−ε)n
time.2

Under #ETH (the hypothesis that counting 3-SAT solutions requires 2Ω(n) time), it is
known (for example) that counting the number of independent sets of size n/3 in an n-node
graph requires 2Ω(n) time [24], #2-SAT requires 2Ω(n) time [15], the permanent of n × n
Boolean matrices requires 2Ω(n) [15], and counting the number of perfect matchings in graphs
with m edges requires 2Ω(m) time [14]. The reductions proving these conditional lower bounds
generally introduce a minor (linear) increase in the relevant parameter n. Theorem 4 gives a
tight lower bound for counting solutions to polynomials, under SETH.

Hardness for Counting Orthogonal Vectors over Fp

Let p be any (small) prime. To demonstrate the range of the simple ideas in our reductions,
we also use them to show that exactly counting pairs of O(logn)-dimensional vectors with
inner product zero modulo p (among a given set of n vectors) requires n2−o(1) time under
SETH. This follows from the theorem:

I Theorem 5. Let p be prime, and let ` ∈ [1, d] be an integer dividing d. There is an
Õ(n · `2d/` · p`)-time reduction from #OV with n vectors in d dimensions to p` instances of
#OVp, each with n vectors in `2d/` + 1 dimensions.

I Corollary 6. Let ε > 0 be sufficiently small. There is an Õ(n1+ε · pO(c/ε))-time reduction
from #OV with n vectors in c logn dimensions to nε instances of #OVp, each with n vectors
in O(pc/ε log(n)) dimensions.

2 The Strong Exponential Time Hypothesis [12] (SETH) states that for every ε > 0, there is a k > 2
such that k-SAT cannot be solved in (2− ε)n time; it is a vast strengthening of P 6= NP and a mild
strengthening of ETH [25] which states that there is an ε > 0 such that 3-SAT cannot be solved in
(1 + ε)n time. The “counting variant” #SETH states the same strong lower bound for the problem of
counting the number of solutions to a k-SAT instance.

R. R. Williams 6:5

This reduction is in stark contrast with the fact that detecting a pair of vectors with inner
product zero modulo p can be accomplished in nearly-linear time when the vectors have no(1)

dimension [35]. One can either view this result as evidence that the counting problem is
hard, or as (yet) another angle towards refuting SETH.

2 Preliminaries

Exact counting for degree-two equations

Our approximate counting algorithm will use the fact that the exact counting problem for a
single degree-two equation over a finite field Fq is polynomial-time solvable:

I Theorem 7 (Woods [37], p.6). For every prime power q, there is a deterministic n3 ·
poly(log q)-time algorithm for counting the number of solutions to a given degree-two polyno-
mial over Fq.

Ehrenfeucht and Karpinski [17] covered the case of F2, and showed that exact counting
for a degree-three polynomial is already NP-hard. Cai, Chen, Lipton, and Lu [10] gave
an algorithm for the counting problem that works over Zm, for any fixed integer m > 1.
Woods remarks that his algorithm essentially follows from placing the matrices defining the
degree-two polynomial in Jordan canonical form, in which case the number of solutions can
be more-or-less read off from the form obtained.

Small-bias sets

For our approximation algorithm, we need explicit constructions of small sets of vectors
which closely approximate the uniform distribution of vectors, with respect to inner products
over a finite field.

I Definition 8. A set S ⊆ Fnq is ε-biased if for all u ∈ Fnq and r ∈ Fnq ,∣∣∣∣ Pr
v∈S

[〈u, v〉 = r]− Pr
v∈Fn

q

[〈u, v〉 = r]
∣∣∣∣ ≤ ε.

(Note that sometimes a more general definition is given, involving the characters of Fnp ,
but the above simple condition is implied by it. See [18].) The following simple consequences
of being ε-biased will be important:

Prv∈S [〈~0, v〉 = 0] = 1, where ~0 is the all-zeroes vector.
For all u 6= ~0 and r ∈ Fq, Prv∈S [〈u, v〉 = r] ∈ (1/q − ε, 1/q + ε).

We also use deterministic explicit constructions of ε-biased sets over Fp, for every prime p.

I Theorem 9 ([4, 18, 5]). For every prime p, and every ε ∈ (0, 1/pn), there is a
(poly(n, log p)/ε2)-time constructible set of vectors S ⊆ Fnp of cardinality O(n2/ε2) that
is ε-biased.

It will be important that the ε-dependencies in the above theorem are only 1/ε2, but this
can be achieved. For example, the constructions based on linear feedback shift registers of [4]
(which are easily generalized to Fp, see [18]) take all vectors x, y ∈ Fdp, where d = logp(n/ε)
and y corresponds to the coefficient vector of a monic irreducible Fp-polynomial of degree d.
The n-length vector vx,y of the ε-biased set S is generated by repeatedly computing inner
products of y with vectors made up of previously computed inner products, up to n times.

SOSA 2018

6:6 Counting Solutions to Polynomial Systems via Reductions

To construct this set S, the main difficulty is constructing the y’s, which we can do by
enumerating all monic Fp-polynomials of degree d, and throwing out those with non-trivial
divisors. Rabin’s test for irreducibility ([31]) would take O(d2 ·poly(logn, log p)) time. There
are O(n/ε) such polynomials to enumerate, and since ε ≥ 1/pn we have d ≤ O(n), so this step
takes O(n3/ε) · poly(logn, log p) time. The remaining list of monic irreducible polynomials
(paired up with all possible vectors x ∈ Fdp) forms our ε-biased S, and each component of
each n-length vector vx,y in S is just an inner product of two known d-length vectors. The
running time of this construction is therefore O(n4/ε2) (omitting poly(log p) factors).

3 Approximating #MQS: Reduction and Algorithm

We begin with the proof of Theorem 3, which reduces the counting problem for a system of
equations to the counting problem for a single equation.

Let S = {v1, . . . , vm} ⊆ Fsp be an ε-biased set of vectors. Let {p1(y) = 0, . . . , ps(y) = 0}
be a system of degree-d equations over Fp in n variables, and let A ⊆ Fnp be the set of
solutions to the system. For each i = 1, . . . ,m, define the polynomial

Pi(y) =
∑
j

vi[j] · pj(y).

We observe two distinct properties of solutions and non-solutions to the original system:
(a) Every y ∈ A is a solution of the equation Pi(y) = 0 and not of the equation Pi(y) = 1,

for all i = 1, . . . ,m. This follows because for all y ∈ A, p1(y) = · · · = ps(y) = 0.
(b) For every y /∈ A, there are integers N0, N1 ∈ [m(1/p− ε),m(1/p+ ε)] such that y is a

solution to N0 of the m equations Pi(y) = 0 and is a solution to N1 of the m equations
Pi(y) = 1. To see this, note that for y /∈ A, the vector u = [p1(y), . . . , ps(y)] is not
all-zeroes. Thus for any r ∈ Fp we have Pri∈[m][〈u, vi〉 = r] ∈ (1/p+ ε, 1/p− ε), because
S is ε-biased.
Given the ability to count solutions to one degree-d equation, here is an algorithm for

approximately counting solutions to a system of equations:

1. Construct the ε-biased set S = {v1, . . . , vm} ⊂ Fsp.
2. Count the number of solutions to the equation Pi(y) = 0, for all i = 1, . . . ,m.

Let Z be the sum of all these numbers.
3. Count the number of solutions to the equation Pi(y) = 1, for all i = 1, . . . ,m.

Let O be the sum of all these numbers.
4. Output (Z −O)/m.

Now we analyze the algorithm. Let Zi (respectively, Oi) be the number of solutions to
the equation Pi(y) = 0 (respectively, Pi(y) = 1), for all i, . . . ,m. Our algorithm outputs the
quantity:

1
m

(∑
i

Zi −
∑
i

Oi

)
. (1)

By property (a), every y ∈ A contributes 1 to the sum 1
m ·
∑
i Zi, and contributes 0 to the

sum
∑
iOi. By property (b), every y /∈ A contributes a value zy ∈ [1/p− ε, 1/p+ ε] to the

R. R. Williams 6:7

sum 1
m ·
∑
i Zi, and contributes a value oy ∈ [1/p− ε, 1/p+ ε] to the sum 1

m ·
∑
iOi. We can

therefore re-express (1) as:

1
m

(∑
i

Zi −
∑
i

Oi

)
= |A|+

∑
y/∈A

(zy − oy).

Given the bounds on zy’s and oy’s, we can easily upper-bound and lower-bound (1):

|A|+
∑
y/∈A

(zy − oy) ≤ |A|+
∑
y/∈A

((1/p+ ε)− (1/p− ε)) = |A|+ |A| · 2ε

and

|A|+
∑
y/∈A

(zy − oy) ≥ |A|+
∑
y/∈A

((1/p− ε)− (1/p+ ε)) = |A| − |A| · 2ε.

It follows that the algorithm outputs a number that approximates the fraction of solutions
to within ±2ε.

Moreover, observe that to obtain an approximate answer, we do not need an exact
algorithm for counting solutions to one equation: if our algorithm for one equation always
outputs approximations that are within ε/(2m) of the exact count, then each of the 2m
Zi and Oi terms will be computed to within an ε/(2m) factor, and the output will still be
within ±3ε of the exact fraction. This completes the proof of Theorem 3.

To obtain the final algorithm (Theorem 1) for approximately computing #MQS, we
simply apply Theorem 7 to count the number of satisfying assignments to a single quadratic
equation over Fp in n3 · poly(log p) time. Using this algorithm in the above reduction, we get
an approximate counting algorithm running in time Õ(s2/ε2 · (n3 + s) + t(s, 1/ε, p)), where
t(s, 1/ε, p) is the time needed to construct an ε-biased set over Fsp. This completes the proof
of Theorem 1.

3.1 A succinct approximate inclusion-exclusion
The reduction of Theorem 3 works by approximately representing the cardinality of the
intersection of s equations by a linear combination of cardinalities on single Fp-equations.
Along the lines of the work of Linial and Nisan [26] on approximate inclusion-exclusion
via low-degree polynomials over the reals, the ideas of Theorem 3 imply a variant of the
inclusion-exclusion principle. However, unlike Linial and Nisan, our approximation of the
cardinality of the intersection has only polynomially many terms.

To simplify the discussion, here we consider just the case of F2, and consider unions instead
of intersections. Over F2, we will demonstrate how a small-bias set lets us “approximately”
express the cardinality of a union of a set collection as a short linear combination of
cardinalities of what one might call “oddtersections” of sub-collections of sets.

Let (x mod 2) : Z → {0, 1} map integers to bits in the natural way. In Theorem 3, we
are effectively using a representation of the AND function as a short linear combination of
PARITY functions (see, for instance, Alon and Bruck [3]). Below is a representation of the
OR function (which is analogous):

I Lemma 10. For all n ∈ N and ε ∈ (0, 1), there is a (poly(n)/ε2)-time constructible
collection of subsets S1, . . . , Sm ⊆ [n], with m ≤ O(n2/ε2), such that for every x ∈ {0, 1}n,∣∣∣∣∣∣

(
n∨
i=1

xi

)
−

m∑
i=1

2
m
·

∑
j∈Si

xj mod 2

∣∣∣∣∣∣ ≤ ε. (2)

SOSA 2018

6:8 Counting Solutions to Polynomial Systems via Reductions

Proof. Let S = {S1, . . . , Sm} ⊆ [n] be a set family whose corresponding indicator vectors in
{0, 1}n form an (ε/2)-biased set. By Theorem 9, we can take m ≤ O(n2/ε2). Observe:

If (x1, . . . , xn) = ~0 then for all i = 1, . . . ,m, (
∑
j∈Si

xj mod 2) = 0, so
∑m
i=1

2
m ·(∑

j∈Si
xj mod 2

)
= 0.

If (x1, . . . , xn) 6= ~0 then by properties of (ε/2)-biased sets, the number of i ∈ [m] such
that

∑
j∈Si

xj 6= |Si| (mod 2) is in the interval [m/2 − εm/2,m/2 + εm/2]. So in this
case,

m∑
i=1

2
m
·

∑
j∈Si

xj mod 2

 ∈ [2
m
·
(
m− εm

2

)
,

2
m
·
(
m+ εm

2

)]
= [1− ε, 1 + ε] .

This completes the proof. J

Let A1, . . . , Ak be any sets over a finite universe U , and define their oddtersection to be⊕
i

Ai = {x ∈ U | x appears in an odd number of the Ai’s}.

The upshot of Lemma 10 is that we can write:∣∣∣∣∣⋃
i

Ai

∣∣∣∣∣ ≈ε
m∑
i=1

1
m
·

∣∣∣∣∣∣
⊕
j∈Si

Aj

∣∣∣∣∣∣ , (3)

where the ≈ε means that the two quantities are within ε|U | of each other. (Note that | ∪iAi|
is the sum over all y ∈ U of

∨
i=1[y ∈ Ai], where [y ∈ Ai] is 1 if y ∈ A, and 0 otherwise.

Invoking (2) on each term in this sum, we obtain the right-hand side of (3) to within an
additive ±ε|U | factor.) Thus we can approximately represent the cardinality of a union
of sets in a sparse way, as “oddities” of various sub-collections. It seems likely that this
observation has more applications. For example, equation (3) immediately implies that we
can reduce approximate counting for k-DNF formulas (with additive error) to approximate
counting for degree-k polynomials over F2 (with additive error), by letting Ai be the set of
satisfying assignments to the ith clause of a DNF.

3.2 Producing a solution when there are many
Given Theorem 1, one can obtain a deterministic algorithm for producing a solution to a
quadratic system given that it has many solutions, using a self-reducibility argument.3

Reminder of Corollary 2. For every prime p, constant k, and fraction ε ∈ [1/pn, 1], there
is a deterministic algorithm running in poly(n, s, log p)/ε2 time which, given any system of s
quadratic equations in n variables over Fp with at least εpn solutions, outputs a solution.

Proof. Suppose we are given a system over the variables x1, . . . , xn with S ≥ ε · pn solutions,
where ε ≥ 1/pn.

3 This reduction is apparently folklore. See also Goldreich [19, Theorem 3.5] for a generic reduction from
“search-to-decision” in this setting.

R. R. Williams 6:9

For each a ∈ Fp, assign x1 := a in all equations of the system, and run the polynomial-time
approximate counting algorithm of Theorem 1 with error parameter α := ε/(2n). Let x1 := a1
be the assignment that yields the largest count from the algorithm. (If the count returned is
zero for all a ∈ Fp, return fail.) Analogously, set the variables x2 := a2, . . . , xn−k := an−k
one at a time, for k = 2 logp(1/ε), always taking the assignment that yields the largest count.
Finally, try all pk = p2 logp(1/ε) ≤ 1/ε2 assignments on the remaining k variables, and return
any solution found.

Given Theorem 1, it is clear that the algorithm runs in the desired time. Now we turn
to correctness. The algorithm began with a guarantee of S solutions. At least one setting
of the variable x1 yields a system on n − 1 variables with at least S/p solutions. So after
setting x1 to maximize the number of solutions returned by the algorithm, the number of
solutions in the remaining (n− 1)-variable system is at least S1 = S/p− α · pn−1. Similarly,
after setting x1 and x2 appropriately, the number of solutions in the remaining system on
n− 2 variables is at least

S2 = S1/p− α · pn−2 = S/p2 − α · pn−2 − α · pn−2 = S/p2 − 2α · pn−2.

After setting x1, . . . , xi for i = 1, . . . , n, we are inductively guaranteed that the number of
remaining solutions in the system is at least

Si = Si−1/p− α · pn−i = S/pi − α · i · pn−i.

For i = n− 2 logp(1/ε), the number of solutions remaining is at least

εpn/pi − α · i · pn−i ≥ ε · p2 logp(1/ε) − α · np2 logp(1/ε) ≥ (ε− αn) · 1/ε2.

For α = ε/(2n), the number of solutions remaining after setting x1, . . . , xi is at least
1/ε2 · (ε/2) ≥ 1/(2ε), i.e., the number is non-zero. Therefore the algorithm returns a solution,
if there are at least εpn solutions. J

4 From Counting k-SAT to Counting Roots to Polynomials of
O(1)-Degree

Reminder of Theorem 4. Let q be a prime power and ε > 0 be arbitrarily small. There
is an O(qεn)-time deterministic reduction from #k-SAT instances with n variables to the
problem of counting roots to a Fq-polynomial of degree q(k/ε)O(k) with n variables.

Imagining q and k as fixed constants, and ε as a tiny parameter, we obtain a 2O(εn) time
reduction from #k-SAT on n variables to counting roots of an Fq-polynomial on n variables
of degree poly(1/ε).

Proof. Let ε > 0 be arbitrarily small. We are given a k-CNF formula F in n variables
x1, . . . , xn, and we want to reduce it to a single low-degree polynomial. We will in fact reduce
the counting problem for F to a (sub-exponential) number of calls to counting roots of a
single low-degree polynomial.

First, by the Sparsification Lemma [25, 11] (the counting version of which appears
in [15]), we may assume without loss of generality that the k-CNF formula F has at most
m ≤ (k/ε)O(k)n clauses, with 2εn-time overhead.

Second, we can express F as a system of m polynomial equations in the obvious way,
where each equation contains at most k variables (and therefore each equation has degree at

SOSA 2018

6:10 Counting Solutions to Polynomial Systems via Reductions

most k). For all i = 1, . . . , n, add the degree-two equations xi · (1− xi) = 0 to the system
(these equations simply force all solutions to be Boolean). Call the overall system of m+ n

equations G, and note the number of solutions to G equals the number of SAT assignments
to F .

Arbitrarily partitionG into εn subsystems of equationsG1, . . . , Gεn, where each subsystem
has at most (k/ε)O(k) equations. Our next move is to write each Gj as a single polynomial
over the finite field Fq. More precisely, given that Gj contains the t = (k/ε)O(k) equations

p1(x1, . . . , xn) = 0, . . . , pt(x1, . . . , xn) = 0,

define the (q − 1)(k/ε)O(k)-degree polynomial

Pj(x1, . . . , xn) := 1−
t∏
i=1

(1− pi(x1, . . . , xn)q−1).

Note that for all (a1, . . . , an) ∈ Fnq , Pj(a1, . . . , an) = 0 if and only if pi(a1, . . . , an) = 0 for
each i with 1 ≤ i ≤ t. Furthermore, since each pi has at most k variables, there are at most
kt variables in Pj . So by repeatedly applying the identity xqi = xi over Fq, it takes no more
than qO(kt) ≤ q(k/ε)O(k) time to express the polynomial Pj as a sum of monomials, for all
j = 1, . . . , εn.

Finally, we wish to exactly count the number of solutions to the system

P1(x1, . . . , xn) = 0, . . . , Pεn(x1, . . . , xn) = 0 (4)

where each Pj has (k/ε)O(k) variables and degree at most q(k/ε)O(k). Here, we reason
similarly to the earlier approximate counting algorithm (namely, the reduction of Theorem 3),
except instead of using small-biased sets of size polynomial in n, we simply use all qεn possible
linear combinations of the Pj ’s to exactly count.

For every β ∈ Fεnq , suppose we count the number of zeroes to the polynomial

Qβ(x1, . . . , xn) :=
εn∑
j=1

βj · Pj(x1, . . . , xn)

and suppose we count the number of solutions to the polynomial Rβ := 1−Qβ . Note for all
β, the degree of Qβ is at most q(k/ε)O(k). We want to show that a linear combination of
these O(qεn) zero-counts will tell us the number of solutions to the original k-CNF F .

Suppose (a1, . . . , an) ∈ Fnq is a solution to the system G. Then it is also a solution to
the system (4). Hence Pj(a1, . . . , an) = 0 for all j, and therefore Qβ(a1, . . . , an) = 0 for all
β ∈ Fεnq . That is, (a1, . . . , an) is a zero for all qεn polynomials Qβ , and is never a zero for
any Rβ .

On the other hand, if (a1, . . . , an) ∈ Fnq is not a solution to G, then Pj(a1, . . . , an) 6= 0
for some j. So we can think of each Qβ(a1, . . . , an) as the inner product of the vector β
with a fixed non-zero vector. Therefore in this case, Qβ(a1, . . . , an) = 0 for exactly qεn/q
polynomials Qβ , and Rβ(a1, . . . , an) = 0 for exactly qεn/q polynomials Rβ .

Combining these observations, we conclude that

(total number of zeros to all Qβ) − (total number of zeros to all Rβ)
qεn

equals the number of solutions to G. So we can solve #k-SAT by making O(qεn) calls to
counting solutions to a single degree-q(k/ε)O(k) polynomial over Fq. (Note that by tweaking
ε slightly, we can write the number of calls as O(2εn).) J

R. R. Williams 6:11

We observe that the proof of Theorem 4 also provides a subexponential-time reduction
from

exact counting for a system of O(n) degree-O(1) equations

to

exact counting for one degree-O(1) equation.

(Referring back to the proof, even if each pi depended on all n variables but had degree only
k, each polynomial Pi would have n variables and degree at most q(k/ε)O(k), so it would
take at most nq(k/ε)O(k) time to expand each Pi into a sum of monomials.) To compare,
Theorem 3 gave a polynomial-time reduction for the respective approximation versions (but
from a degree-k system to a single degree-k polynomial).

4.1 A consequence for fine-grained counting complexity
The reduction method in the proof of Theorem 4 extends nicely to results on the fine-grained
counting complexity of simple polynomial-time problems. Here we demonstrate this claim
on the problem of counting the number of orthogonal pairs among a set of Boolean vectors:

#Orthogonal Vectors (#OV)
Given: vectors v1, . . . , vn, w1, . . . , wn ∈ {0, 1}d
Output: The number of pairs (i, j) such that 〈vi, wj〉 = 0.

Note that #OV is trivially solvable in O(n2d) time, although faster algorithms are known
for certain ranges of d [22, 13]. The detection problem OV (determining if there is at least
one orthogonal pair) is widely studied. Finding a significantly faster algorithm for OV will
already be challenging, as it is known that (for example) a n1.9 · 2o(d) time algorithm for OV
would contradict SETH [34]. A minor variant of OV studies the problem modulo a fixed
prime p:

Orthogonal Vectors Mod p (OVp)
Given: vectors v1, . . . , vn, w1, . . . , wn ∈ Fdp
Decide: Are there i, j such that 〈vi, wj〉 = 0 mod p?

Williams and Yu [35] showed that OVp is apparently much easier than OV for constant
p: it is solvable in O(n · dp−1) time.

One can similarly define #OVp, in which the task is to count the number of i, j such
that 〈vi, wj〉 = 0 mod p. Recently, Dell and Lapinskas [16] show how to use the algorithm
for OVp to approximately compute #OVp efficiently. In particular, they show that for any
ε > 0, given an #OVp instance with number of solutions N , one can output a value v such
that |v −N | ≤ εN in Õ(ε−4n · dp−1) time.

Interestingly, a minor modification of Theorem 4 shows that exactly computing #OVp is
as hard as #OV itself:

Reminder of Theorem 5. Let p be prime, and let ` ∈ [1, d] be an integer that divides d.
There is an Õ(n · `2d/` · p`)-time reduction from #OV with n vectors in d dimensions to p`
instances of #OVp, each with n vectors in `2d/` + 1 dimensions.

SOSA 2018

6:12 Counting Solutions to Polynomial Systems via Reductions

Proof. The idea of the reduction is analogous to Theorem 4, except we need to be slightly
more abstract in our construction. We start with vectors v1, . . . , vn, w1, . . . , wn ∈ {0, 1}d,
and we want to compute #OV on them. Partition the components of all vectors into ` parts,
where each part has d/` components. For each vector vi, let vi,1, . . . , vi,` ∈ {0, 1}d/` be its
decomposition into parts; define vectors wi,j similarly.

For each j = 1, . . . , `, make a 2d/`-bit vector ai,j which has a 1 in the component
corresponding to the d/`-bit vector vi,j , and 0s in all other components. Also for each
j = 1, . . . , `, make a 2d/`-bit vector bi,j which has a 1 for each d/`-bit vector x such that
〈x,wi,j〉 6= 0, and 0s everywhere else. (This is similar to “embedding 3” of Ahle, Pagh,
Razenshteyn and Silvestri [1, Lemma 3].) Taking the vectors

ai := (ai,1, . . . , ai,`) ∈ {0, 1}`2
d/`

, bi := (bi,1, . . . , bi,`) ∈ {0, 1}`2
d/`

,

over all i = 1, . . . , n, we have 〈vi, wj〉 = 0 if and only if 〈ai, bi〉 = 0. Furthermore, notice that
for all j = 1, . . . , `, 〈ai,j , bi,j〉 ∈ {0, 1}, so for all primes p and for all j, we have 〈ai,j , bi,j〉 = 0
if and only if 〈ai,j , bi,j〉 = 0 mod p.4

We now build 2p` instances of #OVp as follows. For every β ∈ F`p, construct the 2n
vectors

aβi = (β1ai,1, . . . , β`ai,`), bi := (bi,1, . . . , bi,`),

and let Nβ be the number of pairs (aβi , bi′) which are orthogonal modulo p, for all i, i′ =
1, . . . , n. Also construct

cβi = (1, β1ai,1, . . . , β`ai,`), di := (1, bi,1, . . . , bi,`),

and let Mβ be the number of pairs (cβi , di′) which are orthogonal modulo p. Our algorithm
for #OV outputs the quantity∑

β∈p`

(Nβ −Mβ)/p`.

It is easy to see that this reduction has the desired running time and number of oracle
calls. We need to show that the reduction outputs the correct number of orthogonal pairs.
For an orthogonal pair vi, wj in the original instance, we know that 〈ai, bj〉 = 0, and therefore
〈ai,j , bi,j〉 = 0 for all j. So for every vector β, 〈aβi , bj〉 = 0 mod p as well. That is, every
orthogonal pair vi, wj is counted p` times in the sum

∑
β(Nβ −Mβ).

For an non-orthogonal pair vi, wj , we know that 〈ai,j , bi,j〉 6= 0 for some j. In particular,
recalling that all 〈ai,j , bi,j〉 are either 0 or 1, we have that the `-dimensional vector

abi,j = (〈ai,1, bi,1〉, . . . , 〈ai,`, bi,`〉)

is not the all-zero vector over Fp. Observing that

〈aβi , bj〉 = 〈β, abi,j〉 mod p

and

〈cβi , dj〉 = 1 + 〈β, abi,j〉 mod p,

it follows that there are exactly p`−1 choices of β for which 〈aβi , bj〉 = 0 mod p, and p`−1

choices of β for which 〈cβi , dj〉 = 0 mod p. Therefore every non-orthogonal pair has a net
contribution of zero to the sum

∑
β(Nβ −Mβ)/p`. J

4 Note [1] use the fact that 〈ai, bi〉 ∈ {0, 1, . . . , `} to give a non-trivial inapproximability result for
computing the maximum inner product between two vector sets.

R. R. Williams 6:13

Setting ` := dε logp(n)e for tiny ε > 0, we obtain:

Reminder of Corollary 6. Let ε > 0 be sufficiently small. There is an Õ(n1+ε ·pO(c/ε))-time
reduction from #OV with n vectors in c logn dimensions to nε instances of #OVp, each
with n vectors in O(pc/ε log(n)) dimensions.

Therefore an algorithm for counting orthogonal-mod-2 pairs in n1.9 · 2o(d) time would
yield a similar algorithm for counting orthogonal pairs, refuting SETH.

Acknowledgements. I am grateful to the Simons Institute at UC Berkeley for inviting me
to the workshop on “Proving and Using Pseudorandomness” in Spring 2017. There, I got a
chance to think more carefully about the ideas in the approximate counting algorithm. I
also thank the reviewers of SOSA for some helpful comments, and Holger Dell for telling me
about his work on approximate counting; the conversation prompted me to work out the
details for Theorem 5.

References
1 Thomas Dybdahl Ahle, Rasmus Pagh, Ilya P. Razenshteyn, and Francesco Silvestri. On

the complexity of inner product similarity join. In Tova Milo and Wang-Chiew Tan, edit-
ors, Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages
151–164. ACM, 2016. doi:10.1145/2902251.2902285.

2 Miklós Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant depth
circuits. Advances in Computing Research, 5:199–222, 1989.

3 Noga Alon and Jehoshua Bruck. Explicit constructions of depth-2 majority circuits
for comparison and addition. SIAM J. Discrete Math., 7(1):1–8, 1994. doi:10.1137/
S0895480191218496.

4 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction of
almost k-wise independent random variables. Random Struct. Algorithms, 3(3):289–304,
1992. doi:10.1002/rsa.3240030308.

5 Yossi Azar, Rajeev Motwani, and Joseph Naor. Approximating probability distributions
using small sample spaces. Combinatorica, 18(2):151–171, 1998. doi:10.1007/PL00009813.

6 Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. SIAM J.
Comput., 39(6):2464–2486, 2010. doi:10.1137/070712109.

7 Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. SIAM J.
Comput., 39(6):2464–2486, 2010. doi:10.1137/070712109.

8 Mark Braverman. Polylogarithmic independence fools AC0 circuits. J. ACM, 57(5):28:1–
28:10, 2010. doi:10.1145/1754399.1754401.

9 Jehoshua Bruck and Roman Smolensky. Polynomial threshold functions, acˆ0 functions,
and spectral norms. SIAM J. Comput., 21(1):33–42, 1992. doi:10.1137/0221003.

10 Jin-yi Cai, Xi Chen, Richard J. Lipton, and Pinyan Lu. On tractable exponential
sums. In Der-Tsai Lee, Danny Z. Chen, and Shi Ying, editors, Frontiers in Algorithmics,
4th International Workshop, FAW 2010, Wuhan, China, August 11-13, 2010. Proceed-
ings, volume 6213 of Lecture Notes in Computer Science, pages 148–159. Springer, 2010.
doi:10.1007/978-3-642-14553-7_16.

11 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause
width and clause density for SAT. In 21st Annual IEEE Conference on Computational
Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages 252–260. IEEE
Computer Society, 2006. doi:10.1109/CCC.2006.6.

SOSA 2018

http://dx.doi.org/10.1145/2902251.2902285
http://dx.doi.org/10.1137/S0895480191218496
http://dx.doi.org/10.1137/S0895480191218496
http://dx.doi.org/10.1002/rsa.3240030308
http://dx.doi.org/10.1007/PL00009813
http://dx.doi.org/10.1137/070712109
http://dx.doi.org/10.1137/070712109
http://dx.doi.org/10.1145/1754399.1754401
http://dx.doi.org/10.1137/0221003
http://dx.doi.org/10.1007/978-3-642-14553-7_16
http://dx.doi.org/10.1109/CCC.2006.6

6:14 Counting Solutions to Polynomial Systems via Reductions

12 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiab-
ility of small depth circuits. In Jianer Chen and Fedor V. Fomin, editors, Parameterized
and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Den-
mark, September 10-11, 2009, Revised Selected Papers, volume 5917 of Lecture Notes in
Computer Science, pages 75–85. Springer, 2009. doi:10.1007/978-3-642-11269-0_6.

13 Timothy M. Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing razborov-smolensky. In Robert Krauthgamer, editor, Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 1246–1255. SIAM, 2016. doi:10.1137/
1.9781611974331.ch87.

14 Radu Curticapean. Parity separation: A scientifically proven method for permanent weight
loss. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide San-
giorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 47:1–47:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.47.

15 Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponen-
tial time complexity of the permanent and the tutte polynomial. ACM Trans. Algorithms,
10(4):21:1–21:32, 2014. doi:10.1145/2635812.

16 Holger Dell and John Lapinskas. Fine-grained reductions from approximate counting to
decision. CoRR, abs/1707.04609, 2017. arXiv:1707.04609.

17 Andrej Ehrenfeucht and Marek Karpinski. The computational complexity of (xor, and)-
counting problems. Technical Report TR-90-031, International Computer Science Institute,
Berkeley, 1990. URL: http://www.icsi.berkeley.edu/pubs/techreports/tr-90-033.
pdf.

18 Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Velickovic. Approx-
imations of general independent distributions. In S. Rao Kosaraju, Mike Fellows, Avi
Wigderson, and John A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium on
Theory of Computing, May 4-6, 1992, Victoria, British Columbia, Canada, pages 10–16.
ACM, 1992. doi:10.1145/129712.129714.

19 Oded Goldreich. In a world of p=bpp. In Oded Goldreich, editor, Studies in Complexity
and Cryptography. Miscellanea on the Interplay between Randomness and Computation
- In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser,
Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca
Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, volume 6650 of Lecture Notes in
Computer Science, pages 191–232. Springer, 2011. doi:10.1007/978-3-642-22670-0_20.

20 Parikshit Gopalan, Adam R. Klivans, Raghu Meka, Daniel Stefankovic, Santosh Vempala,
and Eric Vigoda. An FPTAS for #knapsack and related counting problems. In Rafail
Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 817–826. IEEE Computer
Society, 2011. doi:10.1109/FOCS.2011.32.

21 Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a faster
deterministic counting algorithm. Computational Complexity, 22(2):275–310, 2013. doi:
10.1007/s00037-013-0068-6.

22 Ben Gum and Richard J. Lipton. Cheaper by the dozen: Batched algorithms. In Vipin
Kumar and Robert L. Grossman, editors, Proceedings of the First SIAM International
Conference on Data Mining, SDM 2001, Chicago, IL, USA, April 5-7, 2001, pages 1–11.
SIAM, 2001. doi:10.1137/1.9781611972719.23.

23 Edward A. Hirsch. A fast deterministic algorithm for formulas that have many satisfying
assignments. Logic Journal of the IGPL, 6(1):59–71, 1998. doi:10.1093/jigpal/6.1.59.

http://dx.doi.org/10.1007/978-3-642-11269-0_6
http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.47
http://dx.doi.org/10.1145/2635812
http://arxiv.org/abs/1707.04609
http://www.icsi.berkeley.edu/pubs/techreports/tr-90-033.pdf
http://www.icsi.berkeley.edu/pubs/techreports/tr-90-033.pdf
http://dx.doi.org/10.1145/129712.129714
http://dx.doi.org/10.1007/978-3-642-22670-0_20
http://dx.doi.org/10.1109/FOCS.2011.32
http://dx.doi.org/10.1007/s00037-013-0068-6
http://dx.doi.org/10.1007/s00037-013-0068-6
http://dx.doi.org/10.1137/1.9781611972719.23
http://dx.doi.org/10.1093/jigpal/6.1.59

R. R. Williams 6:15

24 Christian Hoffmann. Exponential time complexity of weighted counting of independent
sets. In Venkatesh Raman and Saket Saurabh, editors, Parameterized and Exact Compu-
tation - 5th International Symposium, IPEC 2010, Chennai, India, December 13-15, 2010.
Proceedings, volume 6478 of Lecture Notes in Computer Science, pages 180–191. Springer,
2010. doi:10.1007/978-3-642-17493-3_18.

25 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

26 Nathan Linial and Noam Nisan. Approximate inclusion-exclusion. Combinatorica,
10(4):349–365, 1990. doi:10.1007/BF02128670.

27 Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams, and Huacheng
Yu. Beating brute force for systems of polynomial equations over finite fields. In Philip N.
Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2190–
2202. SIAM, 2017. doi:10.1137/1.9781611974782.143.

28 Michael Luby and Boban Velickovic. On deterministic approximation of DNF. Algorithmica,
16(4/5):415–433, 1996. doi:10.1007/BF01940873.

29 Michael Luby, Boban Velickovic, and Avi Wigderson. Deterministic approximate counting
of depth-2 circuits. In Second Israel Symposium on Theory of Computing Systems, ISTCS
1993, Natanya, Israel, June 7-9, 1993, Proceedings, pages 18–24. IEEE Computer Society,
1993. doi:10.1109/ISTCS.1993.253488.

30 Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70,
1991. doi:10.1007/BF01375474.

31 Michael O. Rabin. Probabilistic algorithms in finite fields. SIAM J. Comput., 9(2):273–280,
1980. doi:10.1137/0209024.

32 Luca Trevisan. A note on approximate counting for k-dnf. In Klaus Jansen, Sanjeev
Khanna, José D. P. Rolim, and Dana Ron, editors, Approximation, Randomization, and
Combinatorial Optimization, Algorithms and Techniques, 7th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2004, and
8th International Workshop on Randomization and Computation, RANDOM 2004, Cam-
bridge, MA, USA, August 22-24, 2004, Proceedings, volume 3122 of Lecture Notes in Com-
puter Science, pages 417–426. Springer, 2004. doi:10.1007/978-3-540-27821-4_37.

33 Emanuele Viola. The sum of D small-bias generators fools polynomials of degree D. Com-
putational Complexity, 18(2):209–217, 2009. doi:10.1007/s00037-009-0273-5.

34 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

35 Ryan Williams and Huacheng Yu. Finding orthogonal vectors in discrete structures. In
Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages
1867–1877. SIAM, 2014. doi:10.1137/1.9781611973402.135.

36 Virginia Vassilevska Williams, Joshua R. Wang, Richard Ryan Williams, and Huacheng
Yu. Finding four-node subgraphs in triangle time. In Piotr Indyk, editor, Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
San Diego, CA, USA, January 4-6, 2015, pages 1671–1680. SIAM, 2015. doi:10.1137/1.
9781611973730.111.

37 Alan R. Woods. Unsatisfiable systems of equations, over a finite field. In 39th Annual
Symposium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998, Palo
Alto, California, USA, pages 202–211. IEEE Computer Society, 1998. doi:10.1109/SFCS.
1998.743444.

SOSA 2018

http://dx.doi.org/10.1007/978-3-642-17493-3_18
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/BF02128670
http://dx.doi.org/10.1137/1.9781611974782.143
http://dx.doi.org/10.1007/BF01940873
http://dx.doi.org/10.1109/ISTCS.1993.253488
http://dx.doi.org/10.1007/BF01375474
http://dx.doi.org/10.1137/0209024
http://dx.doi.org/10.1007/978-3-540-27821-4_37
http://dx.doi.org/10.1007/s00037-009-0273-5
http://dx.doi.org/10.1016/j.tcs.2005.09.023
http://dx.doi.org/10.1137/1.9781611973402.135
http://dx.doi.org/10.1137/1.9781611973730.111
http://dx.doi.org/10.1137/1.9781611973730.111
http://dx.doi.org/10.1109/SFCS.1998.743444
http://dx.doi.org/10.1109/SFCS.1998.743444

	Introduction
	Preliminaries
	Approximating #MQS: Reduction and Algorithm
	A succinct approximate inclusion-exclusion
	Producing a solution when there are many

	From Counting k-SAT to Counting Roots to Polynomials of O(1)-Degree
	A consequence for fine-grained counting complexity

