30,257 research outputs found

    Generating, Visualizing and Evaluating High Quality Clusters for Information Organization

    Get PDF
    We present and analyze the star clustering algorithm. We discuss an implementation of this algorithm that supports browsing and document retrieval through information organization. We define three parameters for evaluating a clustering algorithm to measure the topic separation and topic aggregation achieved by the algorithm. In the absence of benchmarks, we present a method for randomly generating clustering data. Data from our user study shows evidence that the star algorithm is effective for organizing information

    Variational Inference for Stochastic Block Models from Sampled Data

    Full text link
    This paper deals with non-observed dyads during the sampling of a network and consecutive issues in the inference of the Stochastic Block Model (SBM). We review sampling designs and recover Missing At Random (MAR) and Not Missing At Random (NMAR) conditions for the SBM. We introduce variants of the variational EM algorithm for inferring the SBM under various sampling designs (MAR and NMAR) all available as an R package. Model selection criteria based on Integrated Classification Likelihood are derived for selecting both the number of blocks and the sampling design. We investigate the accuracy and the range of applicability of these algorithms with simulations. We explore two real-world networks from ethnology (seed circulation network) and biology (protein-protein interaction network), where the interpretations considerably depends on the sampling designs considered

    Communities as Well Separated Subgraphs With Cohesive Cores: Identification of Core-Periphery Structures in Link Communities

    Full text link
    Communities in networks are commonly considered as highly cohesive subgraphs which are well separated from the rest of the network. However, cohesion and separation often cannot be maximized at the same time, which is why a compromise is sought by some methods. When a compromise is not suitable for the problem to be solved it might be advantageous to separate the two criteria. In this paper, we explore such an approach by defining communities as well separated subgraphs which can have one or more cohesive cores surrounded by peripheries. We apply this idea to link communities and present an algorithm for constructing hierarchical core-periphery structures in link communities and first test results.Comment: 12 pages, 2 figures, submitted version of a paper accepted for the 7th International Conference on Complex Networks and Their Applications, December 11-13, 2018, Cambridge, UK; revised version at http://141.20.126.227/~qm/papers

    Analysis of Professional Trajectories using Disconnected Self-Organizing Maps

    Full text link
    In this paper we address an important economic question. Is there, as mainstream economic theory asserts it, an homogeneous labor market with mechanisms which govern supply and demand for work, producing an equilibrium with its remarkable properties? Using the Panel Study of Income Dynamics (PSID) collected on the period 1984-2003, we study the situations of American workers with respect to employment. The data include all heads of household (men or women) as well as the partners who are on the labor market, working or not. They are extracted from the complete survey and we compute a few relevant features which characterize the worker's situations. To perform this analysis, we suggest using a Self-Organizing Map (SOM, Kohonen algorithm) with specific structure based on planar graphs, with disconnected components (called D-SOM), especially interesting for clustering. We compare the results to those obtained with a classical SOM grid and a star-shaped map (called SOS). Each component of D-SOM takes the form of a string and corresponds to an organized cluster. From this clustering, we study the trajectories of the individuals among the classes by using the transition probability matrices for each period and the corresponding stationary distributions. As a matter of fact, we find clear evidence of heterogeneous parts, each one with high homo-geneity, representing situations well identified in terms of activity and wage levels and in degree of stability in the workplace. These results and their interpretation in economic terms contribute to the debate about flexibility which is commonly seen as a way to obtain a better level of equilibrium on the labor market

    Characterizing the community structure of complex networks

    Get PDF
    Community structure is one of the key properties of complex networks and plays a crucial role in their topology and function. While an impressive amount of work has been done on the issue of community detection, very little attention has been so far devoted to the investigation of communities in real networks. We present a systematic empirical analysis of the statistical properties of communities in large information, communication, technological, biological, and social networks. We find that the mesoscopic organization of networks of the same category is remarkably similar. This is reflected in several characteristics of community structure, which can be used as ``fingerprints'' of specific network categories. While community size distributions are always broad, certain categories of networks consist mainly of tree-like communities, while others have denser modules. Average path lengths within communities initially grow logarithmically with community size, but the growth saturates or slows down for communities larger than a characteristic size. This behaviour is related to the presence of hubs within communities, whose roles differ across categories. Also the community embeddedness of nodes, measured in terms of the fraction of links within their communities, has a characteristic distribution for each category. Our findings are verified by the use of two fundamentally different community detection methods.Comment: 15 pages, 20 figures, 4 table
    • …
    corecore