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Abstract
We present and analyze the star clustering algo-

rithm. We discuss an implementation of this algo-

rithm that supports browsing and document retrieval

through information organization. We de�ne three

parameters for evaluating a clustering algorithm to

measure the topic separation and topic aggregation

achieved by the algorithm. In the absence of bench-

marks, we present a method for randomly generating

clustering data. Data from our user study shows evi-

dence that the star algorithm is e�ective for organizing

information.

1 Introduction
Modern information systems have vast amounts of

unorganized data. Users often don't know what they

need until they need it. In dynamic, time-pressured

situations such as emergency relief for weather disas-

ters, presenting the results of a query as a ranked list

of hundreds of titles is ine�ective. To cull the criti-

cal information out of a large set of potentially useful

sources we need methods for organizing as accurately

as possible the data and ways of visualizing this orga-

nization exibly.

We present a paradigm for organizing data that can

be used as a pre-processing step in a static information

system or as a post-processing step on the speci�c doc-

uments retrieved by a query. As a pre-processor, this

system assists users with deciding how to browse the

corpus by highlighting relevant topics and irrelevant

subtopics. Such clustered data is useful for narrowing

down the corpus over which detailed queries can be

formulated. As a post-processor, this system classi-

�es the retrieved data into clusters that capture topic

categories and subcategories.

Our clustering method is called the star algorithm.

The star algorithm gives a hierarchical organization of

a collection into clusters. Each level in the hierarchy is

determined by a threshold for the minimum similarity

between pairs of documents within a cluster at that

particular level in the hierarchy. This method conveys

the topic-subtopic structure of the corpus according to

the similaritymeasure used. Our implementation uses

a modi�cation of the Smart [Sal91] system and the un-

derlying cosine metric. The star algorithm is accurate

in that it produces dense clusters that approximate

cliques with provable guarantees on the pairwise simi-

larity between cluster documents, yet are computable

in O(N2), where N is the number of documents. The

documents in each cluster are tightly inter-related and

a minimum similarity distance between all the docu-

ment pairs in the cluster is guaranteed. This resulting

structure reects the underlying topic structure of the

data. A topic summary for each cluster is provided by

the center of the underlying star for the cluster.

To examine the performance of the star informa-

tion organization system we developed a visualization

method for data organized in clusters that presents

users with three views of the data: a list of text titles;

a Euclidean projection of the clusters in the plane as

disks (of radius proportional to the size of the clus-

ter) that are separated by distances proportional to

the similarity distance between the clusters, and a

graph that shows the similarity relationships between

the documents. The user can examine each view and

select individual objects in the view. For instance,

the user may select the largest disk in the projection



window. This causes the titles of the documents and

their corresponding vertices to be highlighted in the

title and graph views. The user may adjust interac-

tively the thresholding parameter for clustering.

To evaluate the performance of this organization

system we de�ned a precision-recall measure for clus-

tering. We also identi�ed that the intersection point

between the precision curve and the recall curve is the

critical point for measuring the overall performance

for information organization tasks. In the absence of

benchmarks for clustering we developed two methods

for randomly generating benchmarks. We measured

the precision-recall of our algorithm against this data

and found evidence that our algorithm has a high ex-

pected critical point. Depending on how much noise

there is in the data, this value is at least 0:8. To vali-

date these results, we did a user study on a collection

of technical reports. We compared the user clusters

against the system clusters and found further evidence

that the star algorithm has good performance.

The experimental data we gathered and our user

studies give strong positive evidence that clustering

is a useful method for applications that require or-

ganizing data according to topic. Such applications

typically require the algorithm to have high recall, as

in the case of browsing and data reduction. Hearst

and Pedersen [HP96] have already provided evidence

that the clustering mechanism of Scatter/Gather is

useful for high-recall tasks. Scatter/Gather uses frac-

tionation to compute nearest-neighbour clusters. It is

expected to produce clusters with loosely connected

documents. Our clustering method trades-o� perfor-

mance for accuracy and yields tightly connected clus-

ters. This, along with our preliminary experimental

studies, encourages us to think that clustering algo-

rithms with guarantees on the accuracy of the clusters

will support the cluster hypothesis and thus assist in

tasks that require high precision.

This paper is organized as follows. We �rst review

related work. We then introduce our clustering algo-

rithms. We continue by describing our implementa-

tion and visualization. Finally, we explain our perfor-

mance measures and discuss experimental data.

2 Previous Work
There has been extensive research on clustering and

applications to many domains. For a good overview

see [JD88]. For a good overview of using clustering in

information retrieval see [Wil88].

The use of clustering in information retrieval was

mostly driven by the cluster hypothesis [Rij79] which

states that relevant documents tend to be more closely

related to each other than to non-relevant documents.

E�orts have been made to �nd whether the clus-

ter hypothesis is valid. Voorhees [Voo85] discusses

a way of evaluating whether the cluster hypothesis

holds and shows negative results. Croft [Cro80] de-

scribes a method for bottom-up cluster search that

could be shown to outperform a full ranking system

for the Cran�eld collection. Willett's study [Wil88]

shows that the methods he surveys do not outperform

non-clustered search methods. In [JR71] Jardine and

van Rijsbergen show some evidence that search results

could be improved by clustering. Hearst and Pedersen

[HP96] re-examine the cluster hypothesis and conclude

that it holds for tasks that require high recall, such as

browsing.

Our work on clustering presented in this paper pro-

vides further evidence that clustering is good for ap-

plications where the recall is important. We also show

that by trading o� some of the performance of a fast

system such as Scatter/Gather1 [CKP93] with com-

putation to ensure cluster accuracy, (that is, to guar-

antee a minimum similarity between all pairs of docu-

ments in a cluster) clusters can also be good for tasks

where precision is important. To compute accurate

clusters, we formalize clustering as covering graphs

by cliques. Covering by cliques is NP-complete, and

thus intractable for large document collections. Re-

cent graph-theoretic results have shown that the prob-

lem can't even be approximated in polynomial time

[LY94, Zuc93]. Recent results for covering graphs by

dense subgraphs [KP93] are encouraging. We used a

cover by dense subgraphs that are star-shaped2. We

show that this algorithm is an accurate and e�cient

approximation of cliques, propose a measure for the

quality of the clusters, and provide experimental data.

3 Clustering Applications

The main application we have in mind for clustering

is in information organization. Information organiza-

tion can be used for browsing. If the clusters capture

the topic structure of the collection, organization can

also be used to narrow the search domain of a query

and to organize the results retrieved in response to a

query. We also believe that tightly connected clusters

(unlike loosely connected clusters such as those ob-

tained by a nearest-neighbour method or a single link

method) can also be used to improve retrieval as the

cluster hypothesis suggests, by returning the clusters

corresponding to the top-most ranked documents. For

our star-algorithm, an alternative is to return an en-

1Scatter/Gather uses fractionation to compute nearest-

neighbor clusters.
2In [SJJ70] stars were also identi�ed to be potentially useful

for clustering.



tire cluster only when a top-ranked document is the

center of a star. We are currently collecting data for

this application.

4 Our clustering method
In this section we motivate and present two algo-

rithms for organizing information systems. The �rst

of our algorithms is very simple and e�cient, and our

second algorithm, while somewhat slower, has the ad-

vantage of being more accurate.

We formulate our problem by representing an in-

formation system by its similarity graph. A similarity

graph is an undirected, weighted graph G = (V;E;w)

where vertices in the graph correspond to documents

and each weighted edge in the graph corresponds to

a measure of similarity between two documents. We

measure the similarity between two documents by us-

ing the cosine metric in the vector space model of the

Smart information retrieval system [Sal91, SM83]. G

is a complete graph with edges of varying weight. An

organization of the graph that produces reliable clus-

ters of similarity � (i.e., clusters where documents

pairwise have similarities of at least �) can be ob-

tained by performing a minimum clique cover of all

edges whose weights are above the threshold �. The

following algorithm can be used to produce a hierarchy

of such organizations which we call summaries:

For any threshold �:

1. Let G� = (V;E�) where E� = fe : w(e) � �g.

2. Compute the minimum clique cover of G�.

3. Represent each clique by a sequence of rep-

resentative terms or by any document in the

clique.

Figure 1: The clique-cover algorithm

This algorithm has three nice features. First, by

using cliques to cover the similarity graph, we are

guaranteed that all the documents in a cluster have

the desired degree of similarity. Second, covering the

edges of the graph allows vertices to belong to several

clusters. Documents can be members of multiple clus-

ters, which is a desirable feature when documents have

multiple subthemes. Third, this algorithm can be it-

erated for a range of thresholds, e�ectively producing

a hierarchical organization structure for the informa-

tion system. Each level in the hierarchy summarizes

the collection at a granularity provided by the thresh-

old.

Unfortunately, this approach is computationally in-

tractable. For real corpora, these graphs can be very

large. The clique cover problem is NP-complete, and

it does not admit polynomial-time approximation al-

gorithms [LY94, Zuc93]. While we cannot perform a

clique cover nor even approximate such a cover, we can

instead cover our graph by dense subgraphs. What we

lose in intra-cluster similarity guarantees, we gain in

computational e�ciency. In the sections that follow,

we describe two such covering algorithms and analyze

their performance and e�ciency.

4.1 Covering with Star-Shaped Sub-

graphs

While covering the thresholded similarity graph

with cliques has many desirable properties as de-

scribed in the previous section, �nding such a cover-

ing is, unfortunately, computationally intractable. We

shall instead �nd a clustering of a set of documents by

covering the associated thresholded similarity graph

with star-shaped subgraphs. A star-shaped subgraph

on m+1 vertices consists of a single star center and m

satellite vertices, where there exist edges between the

star center and each of the satellite vertices. While

�nding cliques in the thresholded similarity graph G�

guarantees a pairwise similarity between documents of

at least �, it would appear at �rst glance that �nding

star-shaped subgraphs in G� would provide similar-

ity guarantees between the star center and each of the

satellite vertices, but no such similarity guarantees be-

tween satellite vertices. However, by investigating the

geometry of our problem in the vector space model,

we can derive a lower bound on the similarity between

satellite vertices as well as provide a formula for the ex-

pected similarity between satellite vertices. The latter

formula predicts that the pairwise similarity between

satellite vertices in a star-shaped subgraph is high, and

together with empirical evidence supporting this for-

mula, we shall safely conclude that covering G� with

star-shaped subgraphs is a reliable method for cluster-

ing a set of documents.

Consider three documents C, S1 and S2 which are

vertices in a star-shaped subgraph of G�, where S1
and S2 are satellite vertices and C is the star center.

By the de�nition of a star-shaped subgraph of G�, we

must have that the similarity between C and S1 is at

least � and that the similaritybetween C and S2 is also

at least �. In the vector space model, these similarities

are obtained by taking the cosine of the angle between

the vectors associated with each document. Let �1 be

the angle between C and S1, and let �2 be the angle

between C and S2. We then have that cos�1 � � and

cos�2 � �. Note that the angle between S1 and S2



can be at most �1 + �2, and therefore the similarity

between S1 and S2 must be at least

cos(�1 + �2) = cos�1 cos�2 � sin�1 sin�2:

Thus, we have a provable lower bound on the similar-

ity between satellite vertices in a star-shaped subgraph

of G�. If � = 0:7, cos�1 = 0:75 and cos�2 = 0:85, for

instance, we can conclude that the similarity between

the two satellite vertices must be at least3

(0:75) � (0:85)�
p
1� (0:75)2

p
1� (0:85)2 � 0:29:

Note that while this may not seem very encouraging,

the above analysis is based on absolute worst-case as-

sumptions, and in practice, the similarities between

satellite vertices are much higher. We further under-

took a study to determine the expected similarity be-

tween two satellite vertices. By making the mathe-

matical assumption that \similar" documents are es-

sentially \random perturbations" of one another in the

vector space model, we were able to derive the follow-

ing formula for the expected similarity between two

satellite vertices:

cos�1 cos�2 +
�

1 + �
sin�1 sin�2:

Note that for the previous example, the above for-

mula would predict a similarity between satellite ver-

tices of approximately 0.78. We have tested this for-

mula against real data, and the results of the test with

the MEDLINE data set are shown in Figure 2. In

this plot, the x- and y-axes are similarities between

cluster centers and satellite vertices, and the z-axis is

the actual mean squared prediction error of the above

formula for the similarity between satellite vertices.

Note that the absolute error (roughly the square root

of the mean squared error) is quite small (approxi-

mately 0.13 in the worst case), and for reasonably

high similarities, the error is negligible. From our tests

with real data, we have concluded that this formula is

quite accurate, and hence we can conclude that star-

shaped subgraphs are reasonably \dense" in the sense

that they imply relatively high pairwise similarities

between documents.

4.2 The Star and Star+ Algorithm

Motivated by the discussion of the previous section,

we now present the star algorithm which can be used

to organize documents in an information system. The

star algorithm is based on a greedy cover of the thresh-

olded similarity graph by star-shaped subgraphs; the

algorithm itself is summarized in Figure 3 below.

3Note that sin � =
p
1� cos2 �.

medline

0
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Figure 2: This �gure shows the error for a 6000 ab-

stract subset of MEDLINE.

Implemented properly, the star algorithm is very

e�cient|it can be made to run in time linear in the

number of edges of the graph, which is O(N2) where

N is the number of vertices in the graph. We will

save our discussion of the performance of the star al-

gorithm for the following sections, but as motivation

for the subsequent improved algorithm, we will note

now that the star algorithm as described above per-

formed very well in a small user study, though some-

what less well on randomly generated data. To im-

prove the performance of the star algorithm, we must

improve the \quality" of the clusters it generates. We

can improve the quality of the clusters generated by

being somewhat more selective about the vertices in-

cluded in a newly generated cluster. In the augmented

star+ algorithm described below, a satellite vertex is

only included in a cluster if at least one-third of the

other candidate satellite vertices have a similarity of

at least � with respect to the satellite vertex in ques-

tion. (In this heuristic, the parameter \one-third" was

arrived at empirically.)

While the star+ algorithm is somewhat slower than

the original star algorithm, it produces more accurate

clusters, slightly outperforming the star algorithm in

a user study and markedly outperforming the star al-

gorithm on randomly generated data. In the sections

that follow, we describe our performance analysis of

these algorithms in detail.

5 System Description
We have implemented a system for organizing in-

formation that uses the star and star+ algorithms.

This organization system (that is the basis for the ex-

periments described in this paper) consists of an aug-



For any threshold �:

1. Let G� = (V;E�) where E� = fe : w(e) � �g.

2. Let each vertex in G� initially be unmarked.

3. Calculate the degree of each vertex v 2 V .

4. Let the vertex of highest degree be a star cen-

ter, and construct a cluster from the star center

and its associated satellite vertices. Mark each

node in the newly constructed cluster.

5. Set the star center's degree to zero and decre-

ment each satellite vertex's degree by one.

6. Repeat steps 4 and 5 until all nodes are

marked.

7. Represent each cluster by the document corre-

sponding to its associated star center.

Figure 3: The star algorithm

mented version of the Smart system [Sal91, All95], a

user interface we have designed, and an implementa-

tion of the star and star+ algorithms on top of Smart.

To index the documents we used Smart search engine

with a cosine normalization weighting scheme. We

enhanced Smart to compute a document to document

similarity matrix for a set of retrieved documents or

a whole collection. The similarity matrix is used to

compute clusters and to visualize the clusters. The

user interface is implemented in Tcl/Tk.

The organization system can be run on a whole

collection, on a speci�ed subcollection, or on the col-

lection of documents retrieved in response to a user

query. Users can input queries by typing in free text.

They have the choice of specifying several corpora.

This system supports distributed information retrieval

but in this paper we do not focus on distribution and

we assume only one centrally located corpus. In re-

sponse to a user query, Smart is invoked to produce a

ranked list of the top most relevant documents, their

titles, locations and document-to-document similarity

information. The similarity information for the entire

collection, or for the collection computed by the query

engine is provided as input to the star (or star+) al-

gorithm. This algorithm returns a list of clusters and

marks their centers.

5.1 Visualization

We developed a visualization method for organized

data that presents users with three views of the data

For any threshold �:

1. Let G� = (V;E�) where E� = fe : w(e) � �g.

2. Let each vertex in G� initially be unmarked.

3. Calculate the degree of each vertex v 2 V .

4. Let the vertex of highest degree be a star cen-

ter, and include this vertex in a newly con-

structed cluster. For each satellite vertex, in-

clude the vertex in the cluster if there exist

edges incident to this vertex from at least 1/3

of the other satellite vertices. Mark each node

in the newly constructed cluster.

5. Set the star center's degree to zero and decre-

ment the degree of each other vertex in the

cluster by one.

6. Repeat steps 4 and 5 until all nodes are

marked.

7. Represent each cluster by the document corre-

sponding to its associated star center.

Figure 4: The star+ algorithm

(see Figure 5): a list of text titles, a graph that

shows the similarity relationship between the docu-

ments, and a graph that shows the similarity relation-

ship between the clusters. These views provide users

with summaries of the data at di�erent levels of detail:

text, document, and topic and facilitate browsing by

topic structure.

The connected graph view (inspired by [All95]) has

nodes corresponding to the retrieved documents. The

nodes are placed in a circle, with nodes corresponding

to the same cluster placed together. Gaps between

the nodes allow us to identify clusters easily. Edges

between nodes are color coded according to the simi-

larity between the documents. Two slider bars allow

the user to establish minimal and maximal weight of

edges to be shown.

Another view presents clusters as disks of a size pro-

portional to the size of the corresponding cluster. The

distance between two clusters is de�ned as a distance

between the central documents and captures the topic

separation between the clusters. Simulated annealing

is used to �nd a cluster placement that minimizes the

sum of relative distance errors between clusters. We

selected a cooling schedule �(t) = t=(1 + �t), where

� = 10�3, initial temperature is 500 and the freezing



point is 10�2. This setting provides a good placement

when the number of clusters returned by the algorithm

is small. This algorithm is fast and its running time

does not depend on the number of clusters. When the

number of clusters is large, the ellipsoid-based method

for Euclidean graph embeddings described in [LLR95]

can be used instead.

All three views and a title window allow the user to

select an individual document or a cluster. Selection

made in one window is simultaneously reected in the

others.

6 Evaluation

Our hypothesis for measuring the performance of a

clustering algorithm is that (1) all the di�erent top-

ics should be separated in di�erent clusters, and (2)

all the documents relevant to a topic should be aggre-

gated together. We call (1) the separation property

and (2) the aggregation property. The main goal of

our experiments is to �nd whether the star algorithm

has good separation and aggregation. A clustering

algorithm that guarantees both aggregation and sep-

aration is well-suited to improve recall-oriented tasks

as well as precision-oriented tasks.

We de�ne three measures, Precision, Recall, and

critical point for evaluating the separation and aggre-

gation of our clustering method by drawing inspiration

from the precision-recall measures for information re-

trieval.

Our measures are de�ned in terms of a \correct"

clustering. In the absence of any benchmarks for clus-

tering, we tried to produce one on the MEDLINE col-

lection by using the humanly-assigned indices. We

found that if we use the human indices only as a ba-

sis for clustering, the resulting clusters do not make

sense. This limited our evaluation to relatively small

collections (162 documents) that humans could index

to produce \correct" clusters, and to randomly gen-

erated clustered data. This data in described later in

this section.

6.1 Precision-Recall Measures

Precision and Recall for clustering are de�ned rel-

ative to a correct clustering of the same data. Let

Ccorrect denote the correct clustering of the data and

Ccomputed denote the computed clustering. For each

document d in the collection we can �nd the set of

clusters Scorrect � Ccorrect and Scomputed � Ccomputed

that contain the document. The precision Pd and re-

call Rd for this document are computed as:

Pd =
Scorrect \ Scomputed

Scomputed

:

Rd =
Scorrect \ Scomputed

Scorrect
:

The precision (respectively, recall) of the clustering

algorithm is then computed as the average of the pre-

cision (respectively, recall) values for all documents in

the corpus:

Precision =

P
n

i=1
Pdi

n
:

Recall =

P
n

i=1
Rdi

n
:

Di�erent thresholds for the minimum similarity be-

tween two documents in the corpus result in di�erent

precision and recall values. If we plot precision and

recall against the threshold value we obtain precision

and recall curves.

6.2 The Critical Point

Under these measures, a trivial algorithm that clus-

ters each document by itself has high precision but

poor recall. A trivial algorithm that clusters all the

documents in one cluster has high recall but poor pre-

cision. It is easy to produce clustering algorithms

that achieve high performance on the recall curve or

on the precision curve, but not both. High precision

guarantees that di�erent topics are separated in di�er-

ent clusters. High recall guarantees that all the doc-

uments relevant to a topic are grouped in the same

cluster. We would like to have both good separation

between topics and guarantees that all the documents

relevant to a topic are aggregated together. We pro-

pose a third parameter called the critical point as a

measure of this idea. The critical point is de�ned as

the intersection point of the precision curve and the

recall curve. High critical points guarantee both topic

separation and topic aggregation.

6.3 Data Generation

In the absence of any suitable benchmarks by which

to test our clustering algorithms, we chose to test our

algorithms using data that we either generated or col-

lected ourselves. The data that we used has two forms:

�rst, we generated clustering data randomly in two

di�erent ways, and second, we performed a small user

study with a real document collection. The former al-

lowed us to have complete control over an arbitrarily

large corpus, while the latter allowed us to test against

user expectations, albeit for small collections. In the

sections that follow, we explain and give the results of

our studies with randomly generated data and a real

collection of documents.



6.3.1 Generating Random Data

Our �rst experiments involved testing our algorithms

against randomly generated clustering data. We gen-

erated clustering data by essentially constructing the

similarity graph for a hypothetical document collec-

tion. Our data generation algorithm admitted the

following parameters: collection size, mean cluster

size and variance, mean cluster overlap and vari-

ance, mean intra-cluster edge weight and variance, and

mean inter-cluster edge weight and variance. Our pro-

cedure for randomly constructing a similarity graph

can be divided into two phases: in the �rst phase, the

overlapping clusters of vertices are generated, and in

the second phase, appropriate edge weights are gener-

ated. To generate the clusters of vertices, a sequence

of cluster size and cluster overlap numbers are gener-

ated according to the parameters speci�ed to the algo-

rithm. For example, the following are typical cluster

size and cluster overlap sequences:

Cluster size: 24; 12; 22;29;16; : : :

Cluster overlap: 3; 5; 0; 6;4; : : :

From this data, the proposed clusters can be gener-

ated. Cluster 1 would consist of vertices 1 through 24,

cluster 2 would consist of vertices 22 through 33, clus-

ter 3 would consist of vertices 29 through 50, and so

on|the size of each successive cluster would be dic-

tated by the sequence of cluster sizes, and the overlap

between consecutive clusters would be dictated by the

sequence of cluster overlaps.

Following the generation of the clusters themselves,

all of the edge weights are then constructed. For each

pair of vertices, a random edge weight is generated

according to either the intra- or inter-cluster distribu-

tion, respectively, depending on whether the pair of

vertices belong to the same or di�erent clusters. Hav-

ing generated a similarity graph with known clusters,

we can test various algorithms against the known clus-

tering and measure performance according the to the

precisions-recall metrics de�ned above. Note that by

carefully setting the mean and variance of the intra-

and inter-cluster distributions, one can create similar-

ity graphs with a speci�ed fraction of faulty data. If

the intra- and inter-cluster distributions overlap, then

a fraction of the intra-cluster edge weights will look

\more like" inter-cluster edge weights, and vice versa.

Such a scheme allows one to simulate real, faulty data,

and our studies with such randomly generated data are

described below.

6.3.2 Experimental Results on Random Data

We generated two data sets according to the algo-

rithm described above by varying the percentage of

faulty data. The �rst set has 15% faulty data (that

is, overlap between the inter-cluster edges and intr-

cluster edges) and the second set has 20% faulty data.

We used these clusters as the correct clusters in our

precision-recall measures and evaluated the perfor-

mance of the star and star+ algorithm on this data.

The precision-recall curves are shown in Figure 6.
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Figure 6: This �gure shows two sets of data. The

top set has 15% faulty data and the bottom set has

20% faulty data. For each set we plotted the intra-

cluster and inter-cluster edge distribution (left) the

precision-recall curves for the star algorithm (middle),

and the precision-recall curves for the augmented star

algorithm (right).

We note that the critical point for the star algo-

rithm is medium at 0:5 for the �rst data set and 0:38

for the second (more faulty) data set. The critical

point of for the star+ algorithm is at 0:9 for the �rst

data set and 0:8 for the second set. We are very en-

couraged by these high values.

6.3.3 GeneratingRandomData on the Sphere

While the random data generation procedure de-

scribed above is very useful in evaluating clustering

algorithms, the data created will not necessarily meet

the geometric constraints imposed by the vector space

model on real data. In this section, we briey de-

scribe a procedure for generating random clustering

data which does meet the geometric constraints im-

posed by the vector space model.

In the vector space model, documents are repre-

sented by vectors in a high-dimensional space, and the



similarity between pairs of documents is given by the

cosine of the angle between the associated vectors. In

the previous sections, we described a mechanism for

generating the similarity graph associated with a col-

lection. In this new data generation procedure, we in-

stead randomly create the vectors in high-dimensional

space which correspond to documents, and then con-

struct the associated similarity graph from these vec-

tors. In brief, well-spaced cluster centers are gener-

ated on a unit sphere of high-dimension, and the clus-

ters of documents themselves are generated by ran-

domly perturbing these cluster centers. By carefully

varying the \spacing" of the cluster centers as well as

the amount of perturbation allowed in generated the

cluster documents, we can again allow for a speci�ed

overlap of clusters as well as a varying degree of faulty

data. Our experiments with this type of randomly

generated clustering data are presented below.

6.3.4 Experimental Results on Random Data

on the Sphere

We generated two data sets according to the algorithm

described above by varying the percentage of faulty

data. The �rst set has 7% faulty data (that is, overlap

between the inter-cluster edges and intr-cluster edges)

and the second set has 12% faulty data. We used these

clusters as the correct clusters in our precision-recall

measures and evaluated the performance of the star

and star+ algorithm on this data. The precision-recall

curves are shown in Figure 7.

We note that the critical point for the star algo-

rithm is medium at 0:55 for the �rst data set and 0:47

for the second (more faulty) data set. The critical

point of for the star+ algorithm is at 0:98 for the �rst

data set and 0:8 for the second set. We are very en-

couraged by these high values. We generated 12 other

data sets by varying the probabilities, the distance

between the cluster centers, the minimum similarity

within a cluster, the number of clusters, and the num-

ber of documents per cluster. The locations of the

critical points are shown in Fugure 8. The percentage

of faulty data seems to be the most sensitive parame-

ter in these experiments.

6.4 A User Study on Technical Reports

We designed an experiment to compute clusters

that are \correct" from the perspective of humans,

and used these clusters as the correct clusters in the

precision-recall computation.

Our study consisted of four graduate students.

These students were presented with 162 abstracts from

the computer science technical report collection and
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Figure 7: This �gure shows two sets of data. The

top set has 7% faulty data and the bottom set has

12% faulty data. For each set we plotted the intra-

cluster and inter-cluster edge distribution (left) the

precision-recall curves for the star algorithm (middle),

and the precision-recall curves for the augmented star

algorithm (right).

were only told to cluster the data. No further instruc-

tions on how to do the clusters were given. One of the

users missed some of the documents so we discarded

his data. We then compared the user clusters among

themselves and against the star-clustering. The data

from this study is shown in Figure 9. The user data is

separated in two groups: (a) two users decided to al-

low one-document clusters and (b) one user decided to

try to cluster all the documents in large clusters. We

found that the star algorithm has a high critical point

(at 0.6) when compared to the clusters generated by

group (a) and a medium critical point (at 0.43) when

compared with the clusters generated by group (b).

This suggests that the star algorithm has good sepa-

ration and aggregation of data and is thus well-suited

for information organization.

7 Discussion

We have presented and analyzed a clustering al-

gorithm. We have discussed methods for evaluating

clustering and for generating benchmarks for cluster-

ing. Our user studies present positive evidence that

the star clustering algorithm can be used to organize

information and further support the cluster hypoth-

esis. Our work extends previous results [HP96] that

support using clustering for browsing applications. We

argue that by using a clustering algorithm that guar-

antees the cluster quality through high separation and

aggregation, clustering is also bene�cial for applica-
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Figure 8: This �gure shows the critical points for

12 experiments with data generated randomly on the

sphere.

tions that require high precision.

In the future we hope to do more detailed user stud-

ies. In the absence of benchmarks this is a tedious

task, as reading and manually organizing thousands of

documents is time consuming. We also plan to develop

experiments that will address directly the bene�ts of

clustering for retrieval, browsing, and data reduction

tasks. Another domain of great interest to us is de-

veloping on-line clustering algorithms that will be the

basis for self-organizing dynamic information systems.
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Figure 5: This is a screen snapshot from a clustering experiment. The top window is the query windon. The

middle window consists of a ranked list of documents that were retrieved in response to the user query. The

user my select \get" to fetch a document or \graph" to request a graphical visualization of the clusters as in the

bottom window. The left graph displays all the documents as dots around a circle. Clusters are separated by

gaps. The edges denote pairs of documents whose similarity falls between the slider parameters. The right graph

displays all the clusters as disks. The radius of a disk is proportional to the size of the cluster. The distance

between the disks is proportional to the similarity distance between the clusters.
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