67 research outputs found

    Instability in Stochastic and Fluid Queueing Networks

    Full text link
    The fluid model has proven to be one of the most effective tools for the analysis of stochastic queueing networks, specifically for the analysis of stability. It is known that stability of a fluid model implies positive (Harris) recurrence (stability) of a corresponding stochastic queueing network, and weak stability implies rate stability of a corresponding stochastic network. These results have been established both for cases of specific scheduling policies and for the class of all work conserving policies. However, only partial converse results have been established and in certain cases converse statements do not hold. In this paper we close one of the existing gaps. For the case of networks with two stations we prove that if the fluid model is not weakly stable under the class of all work conserving policies, then a corresponding queueing network is not rate stable under the class of all work conserving policies. We establish the result by building a particular work conserving scheduling policy which makes the associated stochastic process transient. An important corollary of our result is that the condition ρ1\rho^*\leq 1, which was proven in \cite{daivan97} to be the exact condition for global weak stability of the fluid model, is also the exact global rate stability condition for an associated queueing network. Here ρ\rho^* is a certain computable parameter of the network involving virtual station and push start conditions.Comment: 30 pages, To appear in Annals of Applied Probabilit

    Heavy traffic analysis of a polling model with retrials and glue periods

    Full text link
    We present a heavy traffic analysis of a single-server polling model, with the special features of retrials and glue periods. The combination of these features in a polling model typically occurs in certain optical networking models, and in models where customers have a reservation period just before their service period. Just before the server arrives at a station there is some deterministic glue period. Customers (both new arrivals and retrials) arriving at the station during this glue period will be served during the visit of the server. Customers arriving in any other period leave immediately and will retry after an exponentially distributed time. As this model defies a closed-form expression for the queue length distributions, our main focus is on their heavy-traffic asymptotics, both at embedded time points (beginnings of glue periods, visit periods and switch periods) and at arbitrary time points. We obtain closed-form expressions for the limiting scaled joint queue length distribution in heavy traffic and use these to accurately approximate the mean number of customers in the system under different loads.Comment: 23 pages, 2 figure

    On deciding stability of multiclass queueing networks under buffer priority scheduling policies

    Full text link
    One of the basic properties of a queueing network is stability. Roughly speaking, it is the property that the total number of jobs in the network remains bounded as a function of time. One of the key questions related to the stability issue is how to determine the exact conditions under which a given queueing network operating under a given scheduling policy remains stable. While there was much initial progress in addressing this question, most of the results obtained were partial at best and so the complete characterization of stable queueing networks is still lacking. In this paper, we resolve this open problem, albeit in a somewhat unexpected way. We show that characterizing stable queueing networks is an algorithmically undecidable problem for the case of nonpreemptive static buffer priority scheduling policies and deterministic interarrival and service times. Thus, no constructive characterization of stable queueing networks operating under this class of policies is possible. The result is established for queueing networks with finite and infinite buffer sizes and possibly zero service times, although we conjecture that it also holds in the case of models with only infinite buffers and nonzero service times. Our approach extends an earlier related work [Math. Oper. Res. 27 (2002) 272--293] and uses the so-called counter machine device as a reduction tool.Comment: Published in at http://dx.doi.org/10.1214/09-AAP597 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Fixed points for multi-class queues

    Full text link
    Burke's theorem can be seen as a fixed-point result for an exponential single-server queue; when the arrival process is Poisson, the departure process has the same distribution as the arrival process. We consider extensions of this result to multi-type queues, in which different types of customer have different levels of priority. We work with a model of a queueing server which includes discrete-time and continuous-time M/M/1 queues as well as queues with exponential or geometric service batches occurring in discrete time or at points of a Poisson process. The fixed-point results are proved using interchangeability properties for queues in tandem, which have previously been established for one-type M/M/1 systems. Some of the fixed-point results have previously been derived as a consequence of the construction of stationary distributions for multi-type interacting particle systems, and we explain the links between the two frameworks. The fixed points have interesting "clustering" properties for lower-priority customers. An extreme case is an example of a Brownian queue, in which lower-priority work only occurs at a set of times of measure 0 (and corresponds to a local time process for the queue-length process of higher priority work).Comment: 25 page

    Laws of Little in an open queueing network

    Get PDF
    The object of this research in the queueing theory is theorems about the functional strong laws of large numbers (FSLLN) under the conditions of heavy traffic in an open queueing network (OQN). The FSLLN is known as a fluid limit or fluid approximation. In this paper, FSLLN are proved for the values of important probabilistic characteristics of the OQN investigated as well as the virtual waiting time of a customer and the queue length of customers. As applications of the proved theorems laws of Little in OQN are presented

    A skill based parallel service system under FCFS-ALIS : steady state, overloads and abandonments

    Get PDF
    We consider a queueing system with servers S={m1,...,mJ}, and with customer types C={a,b,...}. A bipartite graph G describes which pairs of server-customer types are compatible. We consider FCFS-ALIS policy: A server always picks the first, longest waiting compatible customer, and a customer is always assigned to the longest idle compatible server. We assume Poisson arrivals and server dependent exponential service times. We derive an explicit product-form expression for the stationary distribution of this system when service capacity is sufficient. We also calculate fluid limits of the system under overload, to show that local steady state exists. We distinguish the case of complete resource pooling when all the customers are served at the same rate by the pooled servers, and the case when the system has a unique decomposition into subsets of customer types, each of which is served at its own rate by a pooled subset of the servers. Finally, we discuss possible behavior of the system with generally distributed abandonments, under many server scaling. This paper complements and extends previous results of Kaplan, Caldentey and Weiss [18], and of Whitt and Talreja [34], as well as previous results of the authors [4, 35] on this topic. Keywords: Service systems, multi type customers, multi type skill based servers, matching of infinite sequences, product form solution, first come first served policy, assign longest idle server policy, complete resource pooling, local steady state, overloaded queues, abandonment

    A Hierarchical Approach to Robust Stability of Multiclass Queueing Networks

    Full text link
    We re-visit the global - relative to control policies - stability of multiclass queueing networks. In these, as is known, it is generally insufficient that the nominal utilization at each server is below 100%. Certain policies, although work conserving, may destabilize a network that satisfies the nominal load conditions; additional conditions on the primitives are needed for global stability. The global-stability region was fully characterized for two-station networks in [13], but a general framework for networks with more than two stations remains elusive. In this paper, we offer progress on this front by considering a subset of non-idling control policies, namely queue-ratio (QR) policies. These include as special cases also all static-priority policies. With this restriction, we are able to introduce a complete framework that applies to networks of any size. Our framework breaks the analysis of QR-global stability into (i) global state-space collapse and (ii) global stability of the Skorohod problem (SP) representing the fluid workload. Sufficient conditions for both are specified in terms of simple optimization problems. We use these optimization problems to prove that the family of QR policies satisfies a weak form of convexity relative to policies. A direct implication of this convexity is that: if the SP is stable for all static-priority policies (the "extreme" QR policies), then it is also stable under any QR policy. While QR-global stability is weaker than global stability, our framework recovers necessary and sufficient conditions for global stability in specific networks

    Large Scale Stochastic Dynamics

    Get PDF
    In focus are interacting stochastic systems with many components, ranging from stochastic partial differential equations to discrete systems as interacting particles on a lattice moving through random jumps. More specifically one wants to understand the large scale behavior, large in spatial extent but also over long time spans, as entailed by the characterization of stationary measures, effective macroscopic evolution laws, transport of conserved fields, homogenization, self-similar structure and scaling, critical dynamics, aging, dynamical phase transitions, large deviations, to mention only a few key items

    Near critical catalyst reactant branching processes with controlled immigration

    Get PDF
    Near critical catalyst-reactant branching processes with controlled immigration are studied. The reactant population evolves according to a branching process whose branching rate is proportional to the total mass of the catalyst. The bulk catalyst evolution is that of a classical continuous time branching process; in addition there is a specific form of immigration. Immigration takes place exactly when the catalyst population falls below a certain threshold, in which case the population is instantaneously replenished to the threshold. Such models are motivated by problems in chemical kinetics where one wants to keep the level of a catalyst above a certain threshold in order to maintain a desired level of reaction activity. A diffusion limit theorem for the scaled processes is presented, in which the catalyst limit is described through a reflected diffusion, while the reactant limit is a diffusion with coefficients that are functions of both the reactant and the catalyst. Stochastic averaging principles under fast catalyst dynamics are established. In the case where the catalyst evolves "much faster" than the reactant, a scaling limit, in which the reactant is described through a one dimensional SDE with coefficients depending on the invariant distribution of the reflected diffusion, is obtained. Proofs rely on constrained martingale problem characterizations, Lyapunov function constructions, moment estimates that are uniform in time and the scaling parameter and occupation measure techniques.Comment: Published in at http://dx.doi.org/10.1214/12-AAP894 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore