27,836 research outputs found

    Concentration of the Stationary Distribution on General Random Directed Graphs

    Full text link
    We consider a random model for directed graphs whereby an arc is placed from one vertex to another with a prescribed probability which may vary from arc to arc. Using perturbation bounds as well as Chernoff inequalities, we show that the stationary distribution of a Markov process on a random graph is concentrated near that of the "expected" process under mild conditions. These conditions involve the ratio between the minimum and maximum in- and out-degrees, the ratio of the minimum and maximum entry in the stationary distribution, and the smallest singu- lar value of the transition matrix. Lastly, we give examples of applications of our results to well-known models such as PageRank and G(n, p).Comment: 14 pages, 0 figure

    A spectral method for community detection in moderately-sparse degree-corrected stochastic block models

    Full text link
    We consider community detection in Degree-Corrected Stochastic Block Models (DC-SBM). We propose a spectral clustering algorithm based on a suitably normalized adjacency matrix. We show that this algorithm consistently recovers the block-membership of all but a vanishing fraction of nodes, in the regime where the lowest degree is of order log(n)(n) or higher. Recovery succeeds even for very heterogeneous degree-distributions. The used algorithm does not rely on parameters as input. In particular, it does not need to know the number of communities

    Community detection and stochastic block models: recent developments

    Full text link
    The stochastic block model (SBM) is a random graph model with planted clusters. It is widely employed as a canonical model to study clustering and community detection, and provides generally a fertile ground to study the statistical and computational tradeoffs that arise in network and data sciences. This note surveys the recent developments that establish the fundamental limits for community detection in the SBM, both with respect to information-theoretic and computational thresholds, and for various recovery requirements such as exact, partial and weak recovery (a.k.a., detection). The main results discussed are the phase transitions for exact recovery at the Chernoff-Hellinger threshold, the phase transition for weak recovery at the Kesten-Stigum threshold, the optimal distortion-SNR tradeoff for partial recovery, the learning of the SBM parameters and the gap between information-theoretic and computational thresholds. The note also covers some of the algorithms developed in the quest of achieving the limits, in particular two-round algorithms via graph-splitting, semi-definite programming, linearized belief propagation, classical and nonbacktracking spectral methods. A few open problems are also discussed

    Sparse random graphs: regularization and concentration of the Laplacian

    Full text link
    We study random graphs with possibly different edge probabilities in the challenging sparse regime of bounded expected degrees. Unlike in the dense case, neither the graph adjacency matrix nor its Laplacian concentrate around their expectations due to the highly irregular distribution of node degrees. It has been empirically observed that simply adding a constant of order 1/n1/n to each entry of the adjacency matrix substantially improves the behavior of Laplacian. Here we prove that this regularization indeed forces Laplacian to concentrate even in sparse graphs. As an immediate consequence in network analysis, we establish the validity of one of the simplest and fastest approaches to community detection -- regularized spectral clustering, under the stochastic block model. Our proof of concentration of regularized Laplacian is based on Grothendieck's inequality and factorization, combined with paving arguments.Comment: Added reference

    Lack of Hyperbolicity in Asymptotic Erd\"os--Renyi Sparse Random Graphs

    Full text link
    In this work we prove that the giant component of the Erd\"os--Renyi random graph G(n,c/n)G(n,c/n) for c a constant greater than 1 (sparse regime), is not Gromov δ\delta-hyperbolic for any positive δ\delta with probability tending to one as nn\to\infty. As a corollary we provide an alternative proof that the giant component of G(n,c/n)G(n,c/n) when c>1 has zero spectral gap almost surely as nn\to\infty.Comment: Updated version with improved results and narrativ

    Spectral density of random graphs with topological constraints

    Full text link
    The spectral density of random graphs with topological constraints is analysed using the replica method. We consider graph ensembles featuring generalised degree-degree correlations, as well as those with a community structure. In each case an exact solution is found for the spectral density in the form of consistency equations depending on the statistical properties of the graph ensemble in question. We highlight the effect of these topological constraints on the resulting spectral density.Comment: 24 pages, 6 figure
    corecore