2,019 research outputs found

    Automatic Verification of Message-Based Device Drivers

    Full text link
    We develop a practical solution to the problem of automatic verification of the interface between device drivers and the OS. Our solution relies on a combination of improved driver architecture and verification tools. It supports drivers written in C and can be implemented in any existing OS, which sets it apart from previous proposals for verification-friendly drivers. Our Linux-based evaluation shows that this methodology amplifies the power of existing verification tools in detecting driver bugs, making it possible to verify properties beyond the reach of traditional techniques.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Towards composition of verified hardware devices

    Get PDF
    Computers are being used where no affordable level of testing is adequate. Safety and life critical systems must find a replacement for exhaustive testing to guarantee their correctness. Through a mathematical proof, hardware verification research has focused on device verification and has largely ignored system composition verification. To address these deficiencies, we examine how the current hardware verification methodology can be extended to verify complete systems

    Capturing Assumptions while Designing a Verification Model for Embedded Systems

    Get PDF
    A formal proof of a system correctness typically holds under a number of assumptions. Leaving them implicit raises the chance of using the system in a context that violates some assumptions, which in return may invalidate the correctness proof. The goal of this paper is to show how combining informal and formal techniques in the process of modelling and formal verification helps capturing these assumptions. As we focus on embedded systems, the assumptions are about the control software, the system on which the software is running and the system’s environment. We present them as a list written in natural language that supplements the formally verified embedded system model. These two together are a better argument for system correctness than each of these given separately

    Schedulability analysis of timed CSP models using the PAT model checker

    Get PDF
    Timed CSP can be used to model and analyse real-time and concurrent behaviour of embedded control systems. Practical CSP implementations combine the CSP model of a real-time control system with prioritized scheduling to achieve efficient and orderly use of limited resources. Schedulability analysis of a timed CSP model of a system with respect to a scheduling scheme and a particular execution platform is important to ensure that the system design satisfies its timing requirements. In this paper, we propose a framework to analyse schedulability of CSP-based designs for non-preemptive fixed-priority multiprocessor scheduling. The framework is based on the PAT model checker and the analysis is done with dense-time model checking on timed CSP models. We also provide a schedulability analysis workflow to construct and analyse, using the proposed framework, a timed CSP model with scheduling from an initial untimed CSP model without scheduling. We demonstrate our schedulability analysis workflow on a case study of control software design for a mobile robot. The proposed approach provides non-pessimistic schedulability results
    • 

    corecore